scholarly journals An analytical model for predicting the natural frequency of retaining structures

2020 ◽  
Vol 15 (1) ◽  
pp. 7-12
Author(s):  
Lyazid Guechi ◽  
Smaïn Belkacemi

Abstract The importance of the retaining structures is crucial in geotechnical engineering and the accurate determination of static and seismic earth pressures and natural frequency is important for study the dynamic behavior of these structures. Usually analytical formulas which do not consider the earth pressures behind retaining structure are used. An analytical model for predicting the natural frequency of retaining structures including the earth pressures by failure wedges is proposed in the present analysis. The model considers the effect of Coulomb and Mononobe Okabe failure wedges. Backfill material is considered in the analysis as cohesionless. The failure wedge is an important factor which should be considered in determining the natural frequency of retaining structures. As the weight of failure wedge increases the natural frequency decreases significantly. The current model is validated using several analytical models reported in the literature of the earlier researcher.

2021 ◽  
Vol 263 (5) ◽  
pp. 1723-1732
Author(s):  
Javier Vazquez Torre ◽  
Jonas Brunskog ◽  
Vicente Cutanda Henriquez

An analytical model for the forced sound transmission loss of finite single-leaf walls using a variational technique was previously developed and validated. As the double panel is one of the most used structures in building acoustics, the aim of this paper is to extend the analytical model to consider double panel structures. Analytical formulas for the forced part of the airborne sound insulation of finite sized double panel structures are derived using a variational technique based on the integral-differential equation of the fluid loaded panels. The formulas are valid in the entire audible frequency range. The results are compared to alternative analytical models and measurements, with reasonable agreement.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fei Chong Ng ◽  
Mohamad Aizat Abas

Purpose This paper aims to present new analytical model for the filling times prediction in flip-chip underfill encapsulation process that is based on the surface energetic for post-bump flow. Design/methodology/approach The current model was formulated based on the modified regional segregation approach that consists of bump and post-bump regions. Both the expansion flow and the subsequent bumpless flow as integrated in the post-bump region were modelled considering the surface energy–work balance. Findings Upon validated with the past underfill experiment, the current model has the lowest root mean square deviation of 4.94 s and maximum individual deviation of 26.07%, upon compared to the six other past analytical models. Additionally, the current analytically predicted flow isolines at post-bump region are in line with the experimental observation. Furthermore, the current analytical filling times in post-bump region are in better consensus with the experimental times as compared to the previous model. Therefore, this model is regarded as an improvised version of the past filling time models. Practical implications The proposed analytical model enables the filling time determination for flip-chip underfill process at higher accuracy, while providing more precise and realistic post-bump flow visualization. This model could benefit the future underfill process enhancement and package design optimization works, to resolve the productivity issue of prolonged filling process. Originality/value The analytical underfill studies are scarce, with only seven independent analytical filling time models being developed to date. In particular, the expansion flow of detachment jump was being considered in only two previous works. Nonetheless, to the best of the authors’ knowledge, there is no analytical model that considered the surface energies during the underfill flow or based on its energy–work balance. Instead, the previous modelling on post-bump flow was based on either kinematic or geometrical that is coupled with major assumptions.


Author(s):  
Saeed Delara ◽  
Kendra MacKay

Horizontal directional drilling (HDD) has become the preferred method for trenchless pipeline installations. Drilling pressures must be limited and a “no-drill zone” determined to avoid exceeding the strength of surrounding soil and rock. The currently accepted industry method of calculating hydraulic fracturing limiting pressure with application of an arbitrary safety factor contains several assumptions that are often not applicable to specific ground conditions. There is also no standard procedure for safety factor determination, resulting in detrimental impacts on drilling operations. This paper provides an analysis of the standard methods and proposes two alternative analytical models to more accurately determine the hydraulic fracture point and acceptable drilling pressure. These alternative methods provide greater understanding of the interaction between the drilling pressures and the surrounding ground strength properties. This allows for more accurate determination of horizontal directional drilling limitations. A comparison is presented to determine the differences in characteristics and assumptions for each model. The impact of specific soil properties and factors is investigated by means of a sensitivity analysis to determine the most critical soil information for each model.


Aerospace ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 150
Author(s):  
Yeon-Kyu Park ◽  
Geuk-Nam Kim ◽  
Sang-Young Park

The CANYVAL-C (CubeSat Astronomy by NASA and Yonsei using a virtual telescope alignment for coronagraph) is a space science demonstration mission that involves taking several images of the solar corona with two CubeSats—1U CubeSat (Timon) and 2U CubeSat (Pumbaa)—in formation flying. In this study, we developed and evaluated structural and thermal designs of the CubeSats Timon and Pumbaa through finite element analyses, considering the nonlinearity effects of the nylon wire of the deployable solar panels installed in Pumbaa. On-orbit thermal analyses were performed with an accurate analytical model for a visible camera on Timon and a micro propulsion system on Pumbaa, which has a narrow operating temperature range. Finally, the analytical models were correlated for enhancing the reliability of the numerical analysis. The test results indicated that the CubeSats are structurally safe with respect to the launch environment and can activate each component under the space thermal environment. The natural frequency of the nylon wire for the deployable solar panels was found to increase significantly as the wire was tightened strongly. The conditions of the thermal vacuum and cycling testing were implemented in the thermal analytical model, which reduced the differences between the analysis and testing.


Author(s):  
C-M Chen ◽  
R-F Fung

The dynamic equations of a micro-positioning Scott—Russell (SR) mechanism associated with two flexible hinges and an offset are developed to calculate output responses. Both rigid and flexible hinges are considered to explore the results. The main features in the kinematics of the SR mechanism are its displacement amplification and straight-line motion, which are widely needed in practical industries. The manufacturing inaccuracy of the SR mechanism definitely causes geometric offsets of flexure hinges, and affects displacement amplification and straight-line output motion. Analytical models based on kinematics and Hamilton's principle are derived to explore the variation of linearity ratio, magnification factor, and deviation factor due to various offsets and link lengths. From numerical simulations for the SR mechanism with various offsets of flexible hinges in the conditions of different link lengths, it is found that offsets of flexure hinges obviously affect the amplifying factor and linearity ratio, and appear to dominate the changes of magnification factors. Moreover, an analytical model is also used to predict magnification factors due to various offsets. Finally, some conclusions concerning the effects of offset on the performance of the SR mechanism are drawn.


2014 ◽  
Vol 670-671 ◽  
pp. 1041-1044 ◽  
Author(s):  
Xi Wang Wang ◽  
Xiao Yang Li ◽  
Lin Lin Zhang ◽  
Xiao Guang Wang

Joint member stiffness in a bolted connection directly influence the safety of a design in regard to both static and fatigue loading as well as in the prevention of separation in the connection. Thus, the accurate determination of the stiffness is of extreme importance to predict the behavior of bolted assemblies. In this paper, An analytical 3D axisymmetric model of bolted joints is proposed to obtain the joint stiffness of Bolted Joints. Considering many different analytical models have been proposed to calculate the joint stiffness, the expression based force equilibrium can be a easy way to choose the best expression for the joint stiffness as a judgment criteria.


Author(s):  
Chao Liu ◽  
Yan He ◽  
Yufeng Li ◽  
Yulin Wang ◽  
Shilong Wang ◽  
...  

Abstract The residual stresses could affect the ability of components to bear loading conditions and also the performance. The researchers considered workpiece surface as a plane and ignored the effect of surface topography induced by the intermittent cutting process when modeling residual stresses. The aim of this research develops an analytical model to predict workpiece residual stresses during intermittent machining by correlating the effect of surface topography. The relative motions of tool and workpiece are analyzed for modeling thermal-mechanical and surface topography. The influence of dynamic cutting force and thermal on different positions of surface topography is also considered in analytical model. Then the residual stresses model with the surface topography effect can be developed in intermittent cutting. The analytical models of dynamic cutting force, surface topography and residual stresses are verified by the experiments. The variation trend of evaluated values of the residual stress of workpiece is basically consistent with that of measured values. The compressive residual stress of workpiece surface in highest point of the surface topography are higher than that in the lowest point.


Fluids ◽  
2021 ◽  
Vol 6 (9) ◽  
pp. 305
Author(s):  
Mikhail V. Chernyshov ◽  
Karina E. Savelova ◽  
Anna S. Kapralova

In this study, we obtain the comparative analysis of methods of quick approximate analytical prediction of Mach shock height in planar steady supersonic flows (for example, in supersonic jet flow and in narrowing channel between two wedges), that are developed since the 1980s and being actively modernized now. A new analytical model based on flow averaging downstream curved Mach shock is proposed, which seems more accurate than preceding models, comparing with numerical and experimental data.


Sign in / Sign up

Export Citation Format

Share Document