A modified approach for automated reference point determination of SLR and VLBI telescopes

2018 ◽  
Vol 85 (10) ◽  
pp. 616-626 ◽  
Author(s):  
Michael Lösler ◽  
Cornelia Eschelbach ◽  
Stefan Riepl

AbstractThe International Terrestrial Reference Frame (ITRF) is derived by combining several space geodetic techniques. Basically, a meaningful combination of the geodesic space techniques is impossible without further geometrical information, i. e. local-ties. Local-tie vectors are defined between the geometrical reference points of space geodetic techniques at co-location stations. These local-ties are introduced during the inter-technique combination process, to overcome the weak physical connection between the space geodetic techniques. In particular, the determination of the reference point of radio telescopes or laser telescopes is a challenging task and requires indirect methods. Moreover, the Global Geodetic Observing System (GGOS) strives for an automated and continued reference point determination with sub-millimeter accuracy, because deviations in local-ties bias global results.This investigation presents a modified approach for automated reference point determination. The new approach extends the prior work of Lösler but evades the synchronization between the terrestrial instrument and the telescope. Thus, synchronization errors are omitted and the technical effort is reduced. A proof of concept was carried out at Geodetic Observatory Wettzell in 2018. Using a high-precision, mobile laser-tracker, the reference point of the Satellite Observing System Wettzell (SOS-W) was derived. An extended version of the in-house developed software package HEIMDALL was employed for a mostly automated data collection. To evaluate the estimated reference point, the derived results are compared with the results of two approved models.

2021 ◽  
Vol 11 (6) ◽  
pp. 2785
Author(s):  
Michael Lösler ◽  
Cornelia Eschelbach ◽  
Thomas Klügel ◽  
Stefan Riepl

A global geodetic reference system (GGRS) is realized by physical points on the Earth’s surface and is referred to as a global geodetic reference frame (GGRF). The GGRF is derived by combining several space geodetic techniques, and the reference points of these techniques are the physical points of such a realization. Due to the weak physical connection between the space geodetic techniques, so-called local ties are introduced to the combination procedure. A local tie is the spatial vector defined between the reference points of two space geodetic techniques. It is derivable by local measurements at multitechnique stations, which operate more than one space geodetic technique. Local ties are a crucial component within the intertechnique combination; therefore, erroneous or outdated vectors affect the global results. In order to reach the ambitious accuracy goal of 1 mm for a global position, the global geodetic observing system (GGOS) aims for strategies to improve local ties, and, thus, the reference point determination procedures. In this contribution, close range photogrammetry is applied for the first time to determine the reference point of a laser telescope used for satellite laser ranging (SLR) at Geodetic Observatory Wettzell (GOW). A measurement campaign using various configurations was performed at the Satellite Observing System Wettzell (SOS-W) to evaluate the achievable accuracy and the measurement effort. The bias of the estimates were studied using an unscented transformation. Biases occur if nonlinear functions are replaced and are solved by linear substitute problems. Moreover, the influence of the chosen stochastic model onto the estimates is studied by means of various dispersion matrices of the observations. It is shown that the resulting standard deviations are two to three times overestimated if stochastic dependencies are neglected.


2018 ◽  
Vol 28 (1) ◽  
pp. 209-225 ◽  
Author(s):  
Rafal Doroz ◽  
Krzysztof Wrobel ◽  
Piotr Porwik

AbstractThis paper presents an effective method for the detection of a fingerprint’s reference point by analyzing fingerprint ridges’ curvatures. The proposed approach is a multi-stage system. The first step extracts the fingerprint ridges from an image and transforms them into chains of discrete points. In the second step, the obtained chains of points are processed by a dedicated algorithm to detect corners and other points of highest curvature on their planar surface. In a series of experiments we demonstrate that the proposed method based on this algorithm allows effective determination of fingerprint reference points. Furthermore, the proposed method is relatively simple and achieves better results when compared with the approaches known from the literature. The reference point detection experiments were conducted using publicly available fingerprint databases FVC2000, FVC2002, FVC2004 and NIST


2021 ◽  
Author(s):  
Grzegorz Bury ◽  
Krzysztof Sośnica ◽  
Radosław Zajdel ◽  
Dariusz Strugarek ◽  
Urs Hugentobler

<p>All satellites of the Galileo and GLONASS navigation systems are equipped with laser retroreflector arrays for Satellite Laser Ranging (SLR). SLR observations to Global Navigation Satellite Systems (GNSS) provide the co-location of two space geodetic techniques onboard navigation satellites.</p><p>SLR observations, which are typically used for the validation of the microwave-GNSS orbits, can now contribute to the determination of the combined SLR+GNSS orbits of the navigation satellites. SLR measurements are especially helpful for periods when the elevation of the Sun above the orbital plane (β angle) is the highest. The quality of Galileo-IOV orbits calculated using combined SLR+GNSS observations improves from 36 to 30 mm for β> 60° as compared to the microwave-only solution. </p><p>Co-location of two space techniques allows for the determination of the linkage between SLR and GNSS techniques in space. Based on the so-called space ties, it is possible to determine the 3D vector between the ground-based co-located SLR and GNSS stations and compare it with the local ties which are determined using the ground measurements. The agreement between local ties derived from co-location in space and ground measurements is at the level of 1 mm in terms of the long-term median values for the co-located station in Zimmerwald, Switzerland.</p><p>We also revise the approach for handling the SLR range biases which constitute one of the main error sources for the SLR measurements. The updated SLR range biases consider now the impact of not only of SLR-to-GNSS observations but also the SLR observations to LAGEOS and the microwave GNSS measurements. The updated SLR range biases improve the agreement between space ties and local ties from 34 mm to 23 mm for the co-located station in Wettzell, Germany.</p><p>Co-location of SLR and GNSS techniques onboard navigation satellites allows for the realization of the terrestrial reference frame in space, onboard Galileo and GLONASS satellites, independently from the ground measurements. It may also deliver independent information on the local tie values with full variance-covariance data for each day with common measurements or can contribute to the control of the ground measurements as long as both GNSS and SLR-to-GNSS observations are available.</p>


2018 ◽  
Vol 39 (2) ◽  
pp. 99-106 ◽  
Author(s):  
Michał Białek ◽  
Przemysław Sawicki

Abstract. In this work, we investigated individual differences in cognitive reflection effects on delay discounting – a preference for smaller sooner over larger later payoff. People are claimed to prefer more these alternatives they considered first – so-called reference point – over the alternatives they considered later. Cognitive reflection affects the way individuals process information, with less reflective individuals relying predominantly on the first information they consider, thus, being more susceptible to reference points as compared to more reflective individuals. In Experiment 1, we confirmed that individuals who scored high on the Cognitive Reflection Test discount less strongly than less reflective individuals, but we also show that such individuals are less susceptible to imposed reference points. Experiment 2 replicated these findings additionally providing evidence that cognitive reflection predicts discounting strength and (in)dependency to reference points over and above individual difference in numeracy.


2015 ◽  
Vol 72 (2) ◽  
pp. 123-131 ◽  
Author(s):  
Marko Igic ◽  
Nebojsa Krunic ◽  
Ljiljana Aleksov ◽  
Milena Kostic ◽  
Aleksandra Igic ◽  
...  

Background/Aim. The vertical dimension of occlusion is a very important parameter for proper reconstruction of the relationship between the jaws. The literature describes many methods for its finding, from the simple, easily applicable clinically, to quite complicated, with the use of one or more devices for determination. The aim of this study was to examine the possibility of determining the vertical dimension of occlusion using the vocals ?O? and ?E? with the control of values o btained by applying cognitive functions. Methods. This investigation was performed with the two groups of patients. The first group consisted of 50 females and 50 males, aged 18 to 30 years. In this group the distance between the reference points (on top of the nose and chin) was measured in the position of the mandible in the vertical dimension of occlusion, the vertical dimension at rest and the pronunciation of the words ?OLO? and ?ELE?. Checking the correctness of the particular value for the word ?OLO? was also performed by the phonetic method with the application of cognitive exercises when the patients counted from 89 to 80. The obtained difference in the average values i n determining the vertical dimension of occlusion and the ?OLO? and ?ELE? in the first group was used as the reference for determining the vertical dimension of occlusion in the second group of patients. The second group comprised of 31 edentulous persons (14 females and 17 males), aged from 54 to 85 years who had been made a complete denture. Results. The average value obtained for the vertical dimension of rest for the entire sample was 2.16 mm, for the word ?OLO? for the entire sample was 5.51 mm and for the word ?ELE? for the entire sample was 7.47 mm. There was no statistically significant difference between the genders for the value of the vertical dimension at rest, ?ELE? and ?OLO?. There was a statistically significant difference between the values f or the vertical dimension at rest, ?OLO? and ?ELE? for both genders. There was a statistically significant correlation between the value for the vertical dimension at rest, ?OLO? and ?ELE?, for both groups of subjects. Conclusion. Determining the vertical dimension of occlusion requires 5.5 mm subtraction from the position of the mandible in pronunciation of the word ?OLO? or 7.5 mm in pronunciation of the word ?ELE?.


2014 ◽  
Vol 18 (12) ◽  
pp. 3339-3344 ◽  
Author(s):  
Graeme A. Snook ◽  
Katherine McGregor ◽  
Andrew J. Urban

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nathan Moles

PurposeConventional approaches to digital preservation posit that archives should define a Designated Community, or future user group, for whom they preserve digital information. Archivists can then use their knowledge of these users as a reference to help them deliver digital information that is intelligible and usable. However, this approach is challenging for archives with mandates to serve wide and diverse audiences; these archives risk undermining their efforts by focusing on the interests of a narrow user group.Design/methodology/approachA unique approach to this challenge was developed in the context of a project to build a digital preservation program at the Ontario Jewish Archives (OJA). It draws from previous research on this topic and is based on a combination of practical and theoretical considerations.FindingsThe approach described here replaces the reference of a Designated Community with three core components: a re-articulation of the Open Archival Information System (OAIS) mandatory responsibilities; the identification of three distinct tiers of access for digital records; and the implementation of an access portal that allows digital records to be accessed and rendered online. Together with supplemental shifts in reference points, they provide an alternative to the concept of a Designated Community in the determination of preservation requirements, the identification of significant properties, the creation of Representation Information and in the evaluation of success.Originality/valueThis article contributes a novel approach to the ongoing conversation about the Designated Community in digital preservation, its application and its limitations in an archival context.


Sign in / Sign up

Export Citation Format

Share Document