Study on Binary Mixture System of Lauroyl Sodium Glutamate Surfactant

2021 ◽  
Vol 58 (1) ◽  
pp. 20-26
Author(s):  
Binbin He ◽  
Liangliang Lin ◽  
Hujun Xu

Abstract In the present study, binary mixtures of sodium N-lauroylglutamate (SLG) and dodecyltrimethylammonium chloride (DTAC) or dodecylbetaine (BS-12) were examined for their synergistic effect. The surface chemical properties of the compound systems with different molar ratios were determined by the regular solution theory. Results indicated that both compound systems show synergistic effects of overall synergy, in which the SLG/DTAC system exhibited a better activity than the SLG/BS-12 system. The aggregation number of SLG compound systems was smaller than that of single surfactants, and the difference of the proportion of the two surfactants had little effect on the aggregation number of compound systems.

2019 ◽  
Vol 10 ◽  
pp. 2116-2127 ◽  
Author(s):  
Xiao-Yu Sun ◽  
Xiao Sun ◽  
Xian Zhang ◽  
Ni-Xian Qian ◽  
Min Wang ◽  
...  

In this work, sulfur-doped (S-doped) TiO2 with the (001) face exposed was synthesized by thermal chemical vapor deposition at 180 or 250 °C using S/Ti molar ratios R S/Ti of 0, 0.5, 1, 2, 3, 4 and 5. The S-doped samples synthesized at 250 °C exhibit a significantly improved photocatalytic performance. More precisely, S-doping has the following effects on the material: (1) S can adopt different chemical states in the samples. Specifically, it exists in the form of S2− replacing O2− at a ratio of R S/Ti = 1 and also in the form of S6+ replacing Ti4+ at R S/Ti ≥ 2. As a result, S-doping causes a lattice distortion, because the ionic radii of S2− and S6+ differ from that of the O2− and Ti4+ ions. (2) S-doping increases the adsorption coefficient A e for methylene blue (MB) from 0.9% to 68.5% due to the synergistic effects of the oxygen vacancies, increased number of surface chemical adsorption centers as a result of SO4 2− adsorption on the TiO2 surface and the larger pore size. (3) S-doping increases the MB degradation rate from 6.9 × 10−2 min−1 to 18.2 × 10−2 min−1 due to an increase in the amount of •OH and •O2− radicals.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 660
Author(s):  
Qingqing Liu ◽  
Di Gao ◽  
Wei Xu

According to the old surface coating process of European and American furniture, the surface of modified poplar is first differentiated pre-treatment, and then the bottom color modification and material color modification are respectively applied to the modified poplar after the surface differentiation treatment. The visual physical quantity and physical and chemical properties were measured and compared with mahogany, which is commonly used in old furniture in Europe and America to explore the effect of colorants and coloring steps, as well as different surface pretreatments on the coloring effect. Finally, it is concluded that continuous coloring operations can narrow the difference in brightness and red color value in the coloring layer of modified poplar and mahogany. Continuous coloring operations increase the difference between the yellow-green color values of modified poplar and mahogany. Therefore, the coloring difference between modified poplar and mahogany was affected by the colorant and coloring steps. Through color accumulation, the gap between the two in the target color coloring effect can be reduced, thereby reducing the difference between the coloring effect of modified poplar and mahogany.


2020 ◽  
Vol 74 (9) ◽  
pp. 681-688 ◽  
Author(s):  
Eva Hevia

Core tools of synthetic chemistry, polar organometallic reagents (typified by organolithium and Grignard reagents) are used worldwide for constructing compounds, especially aromatic compounds, which are ubiquitous in organic chemistry and thus in numerous commodities essential to everyday life. By isolation and characterisation of key organometallic intermediates, research in our group has led to the design of polar mixed-metal reagents imbued with synergistic effects that display chemical properties and reactivity profiles far exceeding the limits of traditional single-metal reagents. These studies have improved existing, or established new fundamentally important, synthetic methodologies based on either stoichiometric or catalytic reactions. Bimetallic cooperative effects have been demonstrated in an impressive array of important bond forming reactions including deprotonative metallation, transition metal-free C–C bond formation and metal–halogen exchange to name just a few. Towards greener, more sustainable, safer chemical transformations, our group has also pioneered the use of polar organometallic reagents under air and/or with water present using biorenewable solvents such as Deep Eutectic Solvents (DES) and 2-methyl THF. Herein we summarize some of our recent efforts in this intriguing area, which we believe can make inroads towards a step change in the practice and future scope of polar organometallic chemistry.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Huan-Hua Xu ◽  
Zhen-Hong Jiang ◽  
Cong-Shu Huang ◽  
Yu-Ting Sun ◽  
Long-Long Xu ◽  
...  

Abstract Background OPD and OPD' are the two main active components of Ophiopogon japonicas in Shenmai injection (SMI). Being isomers of each other, they are supposed to have similar pharmacological activities, but the actual situation is complicated. The difference of hemolytic behavior between OPD and OPD' in vivo and in vitro was discovered and reported by our group for the first time. In vitro, only OPD' showed hemolysis reaction, while in vivo, both OPD and OPD' caused hemolysis. In vitro, the primary cause of hemolysis has been confirmed to be related to the difference between physical and chemical properties of OPD and OPD'. In vivo, although there is a possible explanation for this phenomenon, the one is that OPD is bio-transformed into OPD' or its analogues in vivo, the other one is that both OPD and OPD' were metabolized into more activated forms for hemolysis. However, the mechanism of hemolysis in vivo is still unclear, especially the existing literature are still difficult to explain why OPD shows the inconsistent hemolysis behavior in vivo and in vitro. Therefore, the study of hemolysis of OPD and OPD' in vivo is of great practical significance in response to the increase of adverse events of SMI. Methods Aiming at the hemolysis in vivo, this manuscript adopted untargeted metabolomics and lipidomics technology to preliminarily explore the changes of plasma metabolites and lipids of OPD- and OPD'-treated rats. Metabolomics and lipidomics analyses were performed on ultra-high performance liquid chromatography (UPLC) system tandem with different mass spectrometers (MS) and different columns respectively. Multivariate statistical approaches such as principal component analysis (PCA) and orthogonal partial least square-discriminant analysis (OPLS-DA) were applied to screen the differential metabolites and lipids. Results Both OPD and OPD' groups experienced hemolysis, Changes in endogenous differential metabolites and differential lipids, enrichment of differential metabolic pathways, and correlation analysis of differential metabolites and lipids all indicated that the causes of hemolysis by OPD and OPD' were closely related to the interference of phospholipid metabolism. Conclusions This study provided a comprehensive description of metabolomics and lipidomics changes between OPD- and OPD'-treated rats, it would add to the knowledge base of the field, which also provided scientific guidance for the subsequent mechanism research. However, the underlying mechanism require further research.


2018 ◽  
Vol 617 ◽  
pp. A20 ◽  
Author(s):  
R. Aladro ◽  
S. König ◽  
S. Aalto ◽  
E. González-Alfonso ◽  
N. Falstad ◽  
...  

Aiming to characterise the properties of the molecular gas in the ultra-luminous infrared galaxy Mrk 273 and its outflow, we used the NOEMA interferometer to image the dense-gas molecular tracers HCN, HCO+, HNC, HOC+ and HC3N at ∼86 GHz and ∼256 GHz with angular resolutions of 4ʺ̣9 × 4ʺ̣5 (∼3.7 × 3.4 kpc) and 0ʺ̣61 × 0ʺ̣55 (∼460 × 420 pc). We also modelled the flux of several H2O lines observed with Herschel using a radiative transfer code that includes excitation by collisions and far-infrared photons. The disc of the Mrk 273 north nucleus has two components with decoupled kinematics. The gas in the outer parts (R ∼ 1.5 kpc) rotates with a south-east to north-west direction, while in the inner disc (R ∼ 300 pc) follows a north-east to south-west rotation. The central 300 pc, which hosts a compact starburst region, is filled with dense and warm gas, and contains a dynamical mass of (4 −5) × 109 M⊙, a luminosity of L′HCN = (3–4) × 108 K km s−1 pc2, and a dust temperature of 55 K. At the very centre, a compact core with R ∼ 50 pc has a luminosity of LIR = 4 × 1011 L⊙ (30% of the total infrared luminosity), and a dust temperature of 95 K. The core is expanding at low velocities ∼50–100 km s−1, probably affected by the outflowing gas. We detect the blue-shifted component of the outflow, while the red-shifted counterpart remains undetected in our data. Its cold and dense phase reaches fast velocities up to ∼1000 km s−1, while the warm outflowing gas has more moderate maximum velocities of ∼600 km s−1. The outflow is compact, being detected as far as 460 pc from the centre in the northern direction, and has a mass of dense gas ≤8 × 108 M⊙. The difference between the position angles of the inner disc (∼70°) and the outflow (∼10°) indicates that the outflow is likely powered by the AGN, and not by the starburst. Regarding the chemistry in Mrk 273, we measure an extremely low HCO+/HOC+ ratio of 10 ± 5 in the inner disc of Mrk 273.


Holzforschung ◽  
2002 ◽  
Vol 56 (1) ◽  
pp. 51-59 ◽  
Author(s):  
P. Widsten ◽  
J.E. Laine ◽  
P. Qvintus-Leino ◽  
S. Tuominen

Summary The present paper aims at elucidating the effect of high-temperature defibration at different temperatures on the bulk and surface chemical properties of defibrated birch, aspen and eucalypt. The results indicate that defibration of these hardwoods results in partial depolymerization of fiber lignin via (homolytic) cleavage of interunit alkyl-aryl (β-O-4) ether bonds. This increases the phenolic hydroxyl content and produces relatively stable (phenoxy) radicals. Syringyl-type lignin is more extensively depolymerized than guaiacyl-type lignin. Defibration generates water-extractable material, which is enriched in hemicellulose-derived carbohydrates and has a substantial content of aromatic compounds rich in phenolic hydroxyl groups. The amount of water-extract and the extent of lignin interunit ether bond cleavage increase with an increase in defibration temperature. The differences between various hardwood species in this respect are small. The surface chemical composition of the fibers differs considerably from their bulk composition, but is not significantly influenced by variations in defibration temperature. Lipophilic extractives cover a large portion of the fiber surface, while the lignin content of lipophilic extractives-free fiber surfaces is 2–3 times as high as the bulk lignin content of the fibers.


Sign in / Sign up

Export Citation Format

Share Document