Preparation and Optoelectronic Properties of In2O3 Microtubes

2014 ◽  
Vol 936 ◽  
pp. 123-126
Author(s):  
Shuai Chen ◽  
Yun Ze Long ◽  
Hong Di Zhang ◽  
Shu Liang Liu ◽  
Ling Zhi Liu ◽  
...  

Ultrathin indium oxide (In2O3) microtubes were successfully fabricated by electrospinning, magnetron sputtering and followed calcination. The hollow In2O3tubes were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and UV-visible spectroscopy. Outer diameter of the microtubes was in the range of 700-900 nm, and inner diameter was about 400-600 nm. Optoelectronic properties of the In2O3tubes were investigated by irradiation of UV light with different wavelengths (254, 308 and 365 nm). It was found that the In2O3microtubes had a fast and strong response to UV irradiation.

2021 ◽  
Vol 16 ◽  
pp. 155892502110438
Author(s):  
Parshuram Singh ◽  
Sapna Balayan ◽  
Rajendra Kumar Sarin ◽  
Utkarsh Jain

Fibers are the unit component for product development. They can be divided into two types: synthetic and natural fibers. Recently, emerging nanotechnology has played a vital role in advancing next-generation fabrics. The nanomaterials provide several unique properties such as higher conductivity, self-cleaning, water-resistant, and others. Owing to their advanced properties, the fabrics are being developed by coating and integrating with nanomaterials. Therefore, in the presented work two cotton samples were modified with titanium dioxide (TiO2) and zinc oxide (ZnO). These samples were further examined under various techniques including scanning electron microscopy (SEM), UV-visible spectroscopy, X-ray fluorescence (XRF), and Fourier-transform infrared spectroscopy (FTIR). Furthermore, these samples were evaluated at varying wavelengths with UV light and the obtained results demonstrated that the nano-coated fiber samples can be differentiated at 365 nm.


2014 ◽  
Vol 798-799 ◽  
pp. 160-164 ◽  
Author(s):  
Asenete Frutuoso Costa ◽  
P.M. Pimentel ◽  
F.M. Aquino ◽  
D.M.A. Melo ◽  
M.A.F. Melo ◽  
...  

In this paper, CuCrO2the compound was synthesized by a route new that uses gelatin as organic precursor in order to application as ceramic pigments. The type of compound delafossite CuCrO2is known for its wide range of application, such as, thermoelectric devices, catalysts for the steam reforming process, ceramic pigments, NiO2 removal, among. The powders resulting from the synthesis process were calcined the 900°C and characterized by X-ray diffraction (XRD), infrared spectroscopy, scanning electron microscopy (SEM), UV-Visible spectroscopy and colorimetry analysis. The results showed for the CuCrO2have coloring green.


2016 ◽  
Vol 839 ◽  
pp. 136-141
Author(s):  
Arrak Klinbumrung ◽  
Chalermchai Pilapong ◽  
Tawat Suriwong

Antimony sulfide (Sb2S3) nanostructure was synthesized using a 600 W microwave irradiation technique. The precursors including Sb(CH3CO2)3 and Na2S2O3.5H2O were dissolved into 50 mL ethylene glycol (EG) solution with containing 0 and 1 g of hydroxyethyl cellulose (HEC). Phase, morphology and optical properties of the as-synthesized products were determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible spectroscopy and photoluminescence (PL). Energy band gap of Sb2S3 nanostructure exhibits the value of 1.90 and 2.06 eV for synthesizing condition with and without HEC containing, respectively.


2002 ◽  
Vol 16 (06n07) ◽  
pp. 1047-1051
Author(s):  
JIANPING MA ◽  
ZHIMING CHEN ◽  
GANG LU ◽  
MINGBIN YU ◽  
LIANMAO HANG ◽  
...  

Intense photoluminescence (PL) has been observed at room temperature from the polycrystalline SiC samples prepared from carbon-saturated Si melt at a temperature ranging from 1500 to 1650°C. Composition and structure of the samples have been confirmed by means of X-ray photoelectron spectroscopy, X-ray diffraction and scanning electron microscopy. PL measurements with 325 nm UV light excitation revealed that the room temperature PL spectrum of the samples consists of 3 luminescent bands, the peak energies of which are 2.38 eV, 2.77 eV and 3.06 eV, respectively. The 2.38 eV band is much stronger than the others. It is suggested that some extrinsic PL mechanisms associated with defect or interface states would be responsible to the intensive PL observed at room temperature.


Author(s):  
Naveen Thakur ◽  
Nikesh Thakur ◽  
Viplove Bhullar ◽  
Saurabh Sharma ◽  
Aman Mahajan ◽  
...  

Abstract Titanium dioxide (TiO2) nanofibers were synthesized by electrospinning to optimize the photocatalytic action efficiency. The synthesis of the fibers was carried out at four different wt% concentrations: 8, 9, 10 & 11% of polymer polyvinylpyrrolidone (PVP). The TiO2 fibers were further calcined at 700 °C to get powder form. The uncalcinated and calcined TiO2 nanofibers were characterized by using X-Ray diffraction (XRD), Raman spectroscopy, Scanning electron microscopy (SEM) and UV-Visible spectroscopy. Raman spectroscopy confirmed the rutile phase of the calcined TiO2nanofibers in powder form with a crystallite size of 34–38 nm. The surface morphology of the uncalcinated and calcined TiO2 nanofibers was examined by SEM and the fiber diameter found to be 360–540 nm. The optical bandgap of the calcined TiO2 nanofibers was found in the range of 3.29–3.24 eV. The photocatalytic activity of the TiO2 nanofibers as examined for uncalcinated and calcined nanofibers, methyl orange (MO) dye degraded up to 98 and 78%, respectively in 180 min under the exposure of UV light. Uncalcinated TiO2 nanofibers were found more suitable for degradation of MO dye as compared to calcined nanofibers.


Author(s):  
B. Anandh ◽  
A. Muthuvel ◽  
M. Emayavaramban

The present investigation demonstrates the formation of silver nanoparticles by the reduction of the aqueous silver metal ions during exposure to the Lagenaria siceraria leaf extract. The synthesized AgNPs have characterized by UV-visible spectroscopy, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) techniques. AgNPs formation has screened by UV-visible spectroscopy through colour conversion due to surface plasma resonance band at 427 nm. X-ray diffraction (XRD) confirmed that the resulting AgNPs are highly crystalline and the structure is face centered cubic (fcc). FT-IR spectrum indicates the presence of different functional groups present in the biomolecules capping the nanoparticles. Further, inhibitory activity of AgNPs and leaf extract were tested against human pathogens like gram-pastive (Staphylococcus aureus, Bacillus subtilis), gram-negative (Escherichia coli and Pseudomonas aeruginosa). The results indicated that the AgNPs showed moderate inhibitory actions against human pathogens than Lagenaria siceraria leaf extract, demonstrating its antimicrobial value against pathogenic diseases


2021 ◽  
Vol 33 (10) ◽  
pp. 2287-2292
Author(s):  
K. Vijayashree ◽  
K. Sheshappa Rai

Insertion of metal-oxide nanoparticles to polymers stipulate the modification of physical properties of polymers over and above the accomplishment of new features in the polymer matrix. In the current study, an attempt was made to disperse the CuO nanoparticles in the polyvinyl alcohol and hydroxypropyl methylcellulose (HPMC) blend to investigate the structural, mechanical and optical properties of the nanocomposite. Blend was prepared in different ratios using PVA and HPMC, viz. 25:50, 50:50 and 75:25 wt%. The CuO nanoparticles were added to the 75:25 PVA:HPMC blend in different percentage like 0.5,1 and 1.5%. The polymer with and without CuO incorporation were subjected to X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, UV-visible spectral analyses and mechanical strength, etc. The results revealed that the incorporation of the CuO nanoparticles enhanced the structural and mechanical properties of the polymer by forming successful nanocomposite.


2021 ◽  
Author(s):  
Ahmed ZITI ◽  
Bouchaib HARTITI ◽  
Amine BELAFHAILI ◽  
Hicham LABRIM ◽  
Salah FADILI ◽  
...  

Abstract Quaternary semiconductor Cu2NiSnS4 thin film was made by the sol-gel method associated to dip-coating technique on ordinary glass substrates. In this paper, we have studied the impact of dip-coating cycle at different cycles: 4, 5 and 6 on the structural, compositional, morphological, optical and electrical characteristics. CNTS thin films have been analyzed by various characterization techniques including: X-ray diffractometer (XRD), Raman measurements, scanning electron microscope (SEM), energy dispersive X-ray spectroscope (EDS), UV-visible spectroscopy and four-point probe method. XRD spectra demonstrated the formation of cubic Cu2NiSnS4 with privileged orientation at (111) plane. Crystallite size of cubic CNTS thin films increase with from 6.30 to 9.52 with dip-coating cycle augmented. Raman scattering confirmed the existence of CNTS thin films by Raman vibrational mode positioned at 332 cm− 1. EDS investigations showed near-stoichiometry of CNTS sample deposited at 5 cycles. Scanning electron microscope showed uniform surface morphologies without any crack. UV-visible spectroscopy indicated that the optical absorption values are larger than 104 cm− 1, Estimated band gap energy of CNTS absorber layers decrease from 1.64 to 1.5 eV with dip-coating cycle increased. The electrical conductivity of CNTS thin films increase from 0.19 to 4.16 (Ω cm)-1. These characteristics are suitable for solar cells applications.


Crystals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 424 ◽  
Author(s):  
Jia-Le Li ◽  
Wei-Dong Li ◽  
Zi-Wei He ◽  
Shuai-Shuai Han ◽  
Shui-Sheng Chen

A new compound, namely, [Zn(L)2]n (1) was obtained by the reaction of 2-methyl-4-(4H-1,2,4-triazol-4-yl) benzoic acid (HL) with ZnSO4·7H2O, and the compound was characterized by single-crystal X-ray diffraction, infrared spectroscopy, elemental analysis, powder X-ray diffraction (PXRD), and thermogravimetric analysis. The linear HL ligands were deprotonated to be L− anions and act as two-connectors to link Zn2+ to form a two-dimensional (2D) lay structure with (4, 4) topology. The large vacancy of 2D framework allows another layer structure to interpenetrate, resulting in the formation of 2D + 2D → 2D parallel interpenetration in 1. The weak interactions, such as hydrogen bonding and π–π stacking interactions, connect the adjacent 2D layers into a three-dimensional (3D) coordination polymer. The solid-state UV-visible spectroscopy and luminescent property have also been studied.


2018 ◽  
Vol 32 (19) ◽  
pp. 1840044
Author(s):  
Aditya Dalal ◽  
Animesh Mandal ◽  
Shubhada Adhi ◽  
Kiran Adhi

Aluminum (0.5 at.%)-doped ZnO (AZO) thin films were deposited by pulsed laser deposition technique (PLD) in oxygen ambient of 10[Formula: see text] Torr. The deposited thin films were characterized by x-ray diffraction (XRD), photoluminescence (PL), Raman spectroscopy and uv–visible spectroscopy (UV–vis). Next, graphene oxide (GO) was synthesized by Hummers method and was characterized by XRD, UV–vis spectroscopy, Raman spectroscopy and transmission electron microscopy (TEM). Thereafter, GO solution was drop-casted on AZO thin films. These films were then characterized by Raman Spectroscopy, UV–vis spectroscopy and PL. Attempt is being made to comprehend the modifications in properties brought about by integration.


Sign in / Sign up

Export Citation Format

Share Document