Synthesis and Properties of a New Kind of One-Dimensional Conductors. 1. General Aspects

1979 ◽  
Vol 34 (8) ◽  
pp. 983-985 ◽  
Author(s):  
Michael Hanack ◽  
Friedrich Franz Seelig ◽  
Joachim Strähle

AbstractA model for a new kind of one-dimensional conductors is presented. The compounds consist of square-planar metal complexes MX4 which are polymerised via bridging ligands L to linear chains. The bidentate ligand L, e.g. C22-, leads to the formation of a linear π-system along the chain, which is essential for the conductivity. The square-planar complex can be, for example, a metal phthalocyanine. MO-calculations show that this kind of polymer gives rise to a suitable energy band structure. An advantage of the new one-dimensional conductors is their flexibility; different combinations of the square-planar ligand system, the bridging ligand, and the central metal atom can be used. First experimental studies show that the preparation of the proposed conductors is possible.

1981 ◽  
Vol 36 (4) ◽  
pp. 441-446 ◽  
Author(s):  
Frank Kübel ◽  
Joachim Strähle

Abstract Polymeric bis(dimethyl-and diphenylglyoximato)-complexes of Fe(II) and Co(II) with pyrazine as a bridging ligand have been synthesized. The Co(II) complexes are para-magnetic with μ = 1.83 B.M., and surprisingly stable against oxidation. Bis (dimethyl-glyoximato)pyrazine-cobalt (II) crystallizes monoclinic in the space group C2/m with Z = 2. The crystal structure shows linear chains of alternating Co atoms and pyrazine ligands. Perpendicular to the chain, the Co atoms are coordinated in a square planar arrangement by two dimethylglyoximato ligands (Co-N= 189 pm), the local symmetry being C2h-The long Co-pyrazine distance of 224 pm is in agreement with the fact that the compound is a 19 electron complex. The Co complexes do not have conducting properties. The Fe(II) complexes possess the same structure but with stronger bonds in the chain. They show very low conductivity of approximately 10-10 cm -1 Ω-1 . The Mössbauer spectra of the Fe-complexes are reported.


2015 ◽  
Vol 71 (4) ◽  
pp. 301-305 ◽  
Author(s):  
Ana María Atria ◽  
Maria Teresa Garland ◽  
Ricardo Baggio

Three isotypic rare earth complexes,catena-poly[[aquabis(but-2-enoato-κ2O,O′)yttrium(III)]-bis(μ-but-2-enoato)-κ3O,O′:O;κ3O:O,O′-[aquabis(but-2-enoato-κ2O,O′)yttrium(III)]-μ-4,4′-(ethane-1,2-diyl)dipyridine-κ2N:N′], [Y2(C4H5O2)6(C12H12N2)(H2O)2], the gadolinium(III) analogue, [Gd2(C4H5O2)6(C12H12N2)(H2O)2], and the gadolinium(III) analogue with a 4,4′-(ethene-1,2-diyl)dipyridine bridging ligand, [Gd2(C4H5O2)6(C12H10N2)(H2O)2], are one-dimensional coordination polymers made up of centrosymmetric dinuclear [M(but-2-enoato)3(H2O)]2units (M= rare earth), further bridged by centrosymmetric 4,4′-(ethane-1,2-diyl)dipyridine or 4,4′-(ethene-1,2-diyl)dipyridine spacers into sets of chains parallel to the [20\overline{1}] direction. There are intra-chain and inter-chain hydrogen bonds in the structures, the former providing cohesion of the linear arrays and the latter promoting the formation of broad planes parallel to (010).


2004 ◽  
Vol 82 (3) ◽  
pp. 483-489 ◽  
Author(s):  
Jing-Min Shi ◽  
Qing-Yun Liu ◽  
Wen Xu ◽  
Lin Meng ◽  
Peng Cheng ◽  
...  

Two one-dimensional chain complexes, {[Cu(cda)2H2O]·H2O}n (1) and {[Cu(cda)(H2O)2]·(ClO4)·3H2O}n (2) (cda = carbamyldicyanomethanide anion) have been synthesized and their crystal structures determined by X-ray crystallography. The copper(II) ions in 1 are bridged by two µ1,5-cda bridging ligands, whereas in 2 the copper(II) ions are connected by a single µ1,5-cda ligand. Complex 1 is red while 2 is green. Variable-temperature magnetic susceptibility data indicate that there is a very weak antiferromagnetic interaction between the bridged copper(II) ions in both 1 and 2.Key words: synthesis, crystal structure, copper complex, polynitrile ligand, magnetism.


2013 ◽  
Vol 2 (4) ◽  
pp. 88-91 ◽  
Author(s):  
Sandeep Kumar ◽  
Nitin Kumar

In present work, Ligand acetylacetone thiosemicarbazone and their 11 complexes of the type ML2X2, ML2X’, where M = Cu(II), Cd(II), Co(II), Zn(II), Hg(II); L = acetylacetone thiosemicarbazone; X = Cl, NO3 or CH3COO; X’ = SO4 have been synthesized and characterized with the help of molar conductance, magnetic susceptibility measurements, infra-red and ultra-violet spectroscopy. The spectral data revealed that the thiosemicarbazone act as bidentate ligand, making use of thionic sulphur and the azomethine nitrogen atom for co-ordination to the central metal atom. All the compounds have been screened for their antibacterial activity against Gram positive bacteria Staphylococcus aureus, Staphylococcus epidermidis and Gram negative bacteria Escherichia coli and Pseudomonas aeruginosa. Some of complexes exhibited appreciable activity.DOI: http://dx.doi.org/10.3329/icpj.v2i4.14057 International Current Pharmaceutical Journal, March 2013, 2(4): 88-91


2005 ◽  
Vol 60 (12) ◽  
pp. 1269-1272 ◽  
Author(s):  
Claus Mühle ◽  
Andrey Karpov ◽  
Martin Jansen

The title compound has been synthesized by metathesis of Ba[Pt(CN)4]·4 H2O with Rb2SO4, in aqueous solution. Its crystal structure was solved from X-ray powder diffraction data using the simulated-annealing approach, and refined by Rietveld’s method. The compound crystallizes in space group Imma, a = 11.1432(2), b = 7.4382(1), c = 11.1896(2) Å, V = 927.45(3) Å3, Z = 4, Rp = 0.0402, Rw = 0.0247 (Nhkl = 173). Square-planar tetracyanoplatinate groups stack in an unprecedented eclipsed conformation, forming one-dimensional linear chains of Pt-atoms with Pt-Pt separations of 3.719 Å . Rb2[Pt(CN)4] was characterized by differential thermal analysis, thermogravimetry and infrared spectroscopy.


2015 ◽  
Vol 71 (2) ◽  
pp. 159-164 ◽  
Author(s):  
Peter Herich ◽  
Marek Fronc ◽  
Jozef Kožíšek

Three new complexes with 3,6-dichlorobenzene-1,2-dithiol (bdtCl2), namely methyltriphenylphosphonium bis(3,6-dichlorobenzene-1,2-dithiolato-κ2S,S′)cobaltate(1−), (C19H18P)[Co(C6H2Cl2S2)2], (I), bis(methyltriphenylphosphonium) bis(3,6-dichlorobenzene-1,2-dithiolato-κ2S,S′)cuprate(2−) dimethyl sulfoxide disolvate, (C19H18P)2[Cu(C6H2Cl2S2)2]·2C2H6OS, (II), and methyltriphenylphosphonium bis(3,6-dichlorobenzene-1,2-dithiolato-κ2S,S′)cuprate(1−), (C19H18P)[Cu(C6H2Cl2S2)2], (III), have been synthesized and characterized by single-crystal X-ray diffraction. The X-ray structure analyses of all three complexes confirm that the four donor S atoms form a slightly distorted square-planar coordination arrangement around the central metal atom. An interesting finding for both the CuIIand CuIIIcomplexes,i.e.(II) and (III), respectively, is that the coordination polyhedra are principally the same and differ only slightly with respect to the interatomic distances.


1995 ◽  
Vol 23 (2) ◽  
pp. 116-135 ◽  
Author(s):  
H. Shiobara ◽  
T. Akasaka ◽  
S. Kagami ◽  
S. Tsutsumi

Abstract The contact pressure distribution and the rolling resistance of a running radial tire under load are fundamental properties of the tire construction, important to the steering performance of automobiles, as is well known. Many theoretical and experimental studies have been previously published on these tire properties. However, the relationships between tire performances in service and tire structural properties have not been clarified sufficiently due to analytical and experimental difficulties. In this paper, establishing a spring support ring model made of a composite belt ring and a Voigt type viscoelastic spring system of the sidewall and the tread rubber, we analyze the one-dimensional contact pressure distribution of a running tire at speeds of up to 60 km/h. The predicted distribution of the contact pressure under appropriate values of damping coefficients of rubber is shown to be in good agreement with experimental results. It is confirmed by this study that increasing velocity causes the pressure to rise at the leading edge of the contact patch, accompanied by the lowered pressure at the trailing edge, and further a slight movement of the contact area in the forward direction.


Molbank ◽  
10.3390/m1179 ◽  
2021 ◽  
Vol 2021 (1) ◽  
pp. M1179
Author(s):  
Eleftherios Halevas ◽  
Antonios Hatzidimitriou ◽  
Barbara Mavroidi ◽  
Marina Sagnou ◽  
Maria Pelecanou ◽  
...  

A novel Cu(II) complex based on the Schiff base obtained by the condensation of ortho-vanillin with gamma-aminobutyric acid was synthesized. The compounds are physico-chemically characterized by elemental analysis, HR-ESI-MS, FT-IR, and UV-Vis. The complex and the Schiff base ligand are further structurally identified by single crystal X-ray diffraction and 1H and 13C-NMR, respectively. The results suggest that the Schiff base are synthesized in excellent yield under mild reaction conditions in the presence of glacial acetic acid and the crystal structure of its Cu(II) complex reflects an one-dimensional polymeric compound. The molecular structure of the complex consists of a Cu(II) ion bound to two singly deprotonated Schiff base bridging ligands that form a CuN2O4 chelation environment, and a coordination sphere with a disordered octahedral geometry.


2015 ◽  
Vol 71 (12) ◽  
pp. 1033-1036 ◽  
Author(s):  
Nobuyuki Matsushita ◽  
Ayako Taira

The title compound,catena-poly[[[bis(ethylenediamine-κ2N,N′)platinum(II)]- μ-chlorido-[bis(ethylenediamine)platinum(IV)]-μ-chlorido] tetrakis{4-[(4-hydroxyphenyl)diazenyl]benzenesulfonate} dihydrate], {[PtIIPtIVCl2(C2H8N2)4](HOC6H4N=NC6H4SO3)4·2H2O}n, has a linear chain structure composed of square-planar [Pt(en)2]2+(en is ethylenediamine) and elongated octahedraltrans-[PtCl2(en)2]2+cations stacked alternately, bridged by Cl atoms, along thebaxis. The Pt atoms are located on an inversion centre, while the Cl atoms are disordered over two sites and form a zigzag ...Cl—PtIV—Cl...PtII... chain, with a PtIV—Cl bond length of 2.3140 (14) Å, an interatomic PtII...Cl distance of 3.5969 (15) Å and a PtIV—Cl...PtIIangle of 170.66 (6)°. The structural parameter indicating the mixed-valence state of the Pt atom, expressed by δ = (PtIV—Cl)/(PtII...Cl), is 0.643.


2015 ◽  
Vol 71 (8) ◽  
pp. m148-m149
Author(s):  
Mohammad Iqbal ◽  
James Raftery ◽  
Peter Quayle

The title copper(II) complex, {(C27H37N2)[Cu4(CH3COO)8Cl]·3CH2Cl2}n, is a one-dimensional coordination polymer. The asymmetric unit is composed of a copper(II) tetraacetate paddle-wheel complex, a Cl−anion situated on a twofold rotation axis, half a 1,3-bis(2,6-diisopropylphenyl)imidazolium cation (the whole molecule being generated by twofold rotation symmetry) and one and a half of a dichloromethane solvent molecule (one being located about a twofold rotation axis). The central metal-organic framework comprises of a tetranuclear copper(II) acetate `paddle-wheel' complex which arises from the dimerization of the copper(II) tetraacetate core comprising of three μ2-bidentate acetate and one μ3-tridentate acetate ligands per binuclear paddle-wheel complex. Both CuIIatoms of the binuclear component adopt a distorted square-pyramidal coordination geometry (τ = 0.04), with a Cu...Cu separation of 2.6016 (2) Å. The apical coordination site of one CuIIatom is occupied by an O atom of a neighbouring acetate bridge [Cu—O = 2.200 (2) Å], while that of the second CuIIatom is occupied by a bridging chloride ligand [Cu...Cl = 2.4364 (4) Å]. The chloride bridge is slightly bent with respect to the Cu...Cu internuclear axis [Cu—Cl—Cu = 167.06 (6)°] and the tetranuclear units are located about a twofold rotation axis, forming the one-dimensional polymer that propagates along [101]. Charge neutrality is maintained by the inclusion of the 1,3-bis(2,6-diisopropylphenyl)imidazolium cation within the crystal lattice. In the crystal, the cation and dichloromethane solvent molecules are linked to the coordination polymer by various C—H...O and C—H...Cl hydrogen bonds. There are no other significant intermolecular interactions present.


Sign in / Sign up

Export Citation Format

Share Document