(e, 2 e)-Spectroscopy and the Electronic Structure of Molecules. A Short Review with Selected Examples

1993 ◽  
Vol 48 (1-2) ◽  
pp. 358-370
Author(s):  
M. A. Coplan ◽  
J. H. Moore ◽  
J. A. Tossell

Abstract The simple plane wave target Hartree-Fock impulse approximation for the (e, 2e) reaction is developed. One result of the approximation is the separation of the expression for the (e, 2e) cross-section into a kinematic factor and a structure factor that contains all of the information about the target. When the target is a molecule, the structure factor can be further separated into atomic terms and a geometric term. This is illustrated for a simple one-electron homonuclear diatomic molecule. Three examples of the application of (e, 2e) spectroscopy to systems of chemical interest are given. They are borazine (inorganic benzene), the methyl siloxanes and the inorganic complex trimethylamine boron trifluoride.

Author(s):  
Yahya Younesizadeh ◽  
Fayzollah Younesizadeh

In this work, we study the differential scattering cross-section (DSCS) in the first-order Born approximation. It is not difficult to show that the DSCS can be simplified in terms of the system response function. Also, the system response function has this property to be written in terms of the spectral function and the momentum distribution function in the impulse approximation (IA) scheme. Therefore, the DSCS in the IA scheme can be formulated in terms of the spectral function and the momentum distribution function. On the other hand, the DSCS for an electron off the [Formula: see text] and [Formula: see text] nuclei is calculated in the harmonic oscillator shell model. The obtained results are compared with the experimental data, too. The most important result derived from this study is that the calculated DSCS in terms of the spectral function has a high agreement with the experimental data at the low-energy transfer, while the obtained DSCS in terms of the momentum distribution function does not. Therefore, we conclude that the response of a many-fermion system to a probe particle in IA must be written in terms of the spectral function for getting accurate theoretical results in the field of collision. This is another important result of our study.


2014 ◽  
Vol 26 ◽  
pp. 1460082 ◽  
Author(s):  
IGOR I. STRAKOVSKY ◽  
WILLIAM J. BRISCOE ◽  
ALEXANDER E. KUDRYAVTSEV ◽  
VLADIMIR E. TARASOV

We present an overview of the SAID group effort to analyze new γn → π-p cross sections vs. the world database to get new multipoles and determine neutron electromagnetic couplings. The differential cross section for the processes γn → π-p was extracted from new measurements at CLAS and MAMI-B accounting for Fermi motion effects in the impulse approximation (IA) as well as NN- and πN-FSI effects beyond the IA. We evaluated results of several pion photoproduction analyses and compared πN PWA results as a constraint for analyses of pion photoproduction data (Watson's theorem).


2020 ◽  
Vol 235 ◽  
pp. 02005
Author(s):  
F. S. Navarra

We present a short review of exotic charmonium production in heavy ion collisions. We discuss predictions for the production cross section of several of these states in ultra-peripheral Pb-Pb collisions at the LHC. The experimental study of these processes is feasible and can be used to yield valuable information about the structure of multiquark states. We also address X(3872) production in central Pb-Pb collisions. In particular, we discuss the suppression of X(3872) during the hadron gas phase. Finally, we comment on the very recent CMS data on the X(3872) yield in Pb-Pb collisions. the very recent CMS data on the X(3872) yield in Pb-Pb collisions.


2010 ◽  
Vol 24 (14) ◽  
pp. 1601-1614
Author(s):  
ALI A. ALZUBADI ◽  
KHALIL H. ALBAYATI

Theoretical isotropic (spherically symmetric) Compton profiles (ICP) have been calculated for many particle systems' He , Li , Be and B atoms in their ground states. Our calculations were performed using Roothan–Hartree–Fock (RHF) wave function, HF wave function of Thakkar and re-optimized HF wave function of Clementi–Roetti, taking into account the impulse approximation. The theoretical analysis included a decomposition of the various intra and inter shells and their contributions in the total ICP. A high momentum region of up to 4 a.u. was investigated and a non-negligible tail was observed in all ICP curves. The existence of a high momentum tail was mainly due to the electron–electron interaction. The ICP for the He atom has been compared with the available experimental data and it is found that the ICP values agree very well with them. A few low order radial momentum expectation values 〈pn〉 and the total energy for these atomic systems have also been calculated and compared with their counterparts' wave functions.


1968 ◽  
Vol 23 (12) ◽  
pp. 2080-2083 ◽  
Author(s):  
D. Hyatt ◽  
K. Lacmann

A Bendix time of flight mass spectrometer has been modified to enable the determination of some ion-molecule reaction cross sections in the energy range 1 — 100 eV.In the reactions studiedX+ + D2 → XD++Dwhere X may be Ar, N2 or CO, the results obtained agree with the predictions of the polarization theory in the range below 10 eV despite the fact that no intermediate complex is formed at these energies. Between about 10—50 eV where spectator stripping occurs the cross section follows an approximate E-l dependence. Above these energies the results are consistent with a transition to a region in which knock-on processes predominate and where an impulse approximation treatment would be valid.


Sign in / Sign up

Export Citation Format

Share Document