Effect of Vacuum Properties on Electroweak Processes – A Theoretical Interpretation of Experiments

2008 ◽  
Vol 63 (5-6) ◽  
pp. 301-317 ◽  
Author(s):  
Harald Stumpf

Recently for discharges in fluids induced nuclear transmutations have been observed. It is our hypothesis that these reactions are due to a symmetry breaking of the electroweak vacuum by the experimental arrangement. The treatment of this hypothesis is based on the assumption that electroweak bosons, leptons and quarks possess a substructure of elementary fermionic constituents. The dynamical law of these fermionic constituents is given by a relativistically invariant nonlinear spinor field equation with local interaction, canonical quantization, selfregularization and probability interpretation. Phenomenological quantities of electroweak processes follow from the derivation of corresponding effective theories obtained by algebraic weak mapping theorems where the latter theories depend on the spinor field propagator, i. e. a vacuum expectation value. This propagator and its equation are studied for conserved and for broken discrete symmetries. For combined CP- and isospin symmetry breaking it is shown that the propagator corresponds to the experimental arrangements under consideration. The modifications of the effective electroweak theory due to this modified propagator are discussed. Based on these results a mechanism is sketched which offers a qualitative interpretation of the appearance of induced nuclear transmutations. A numerical estimate of electron capture is given.

2006 ◽  
Vol 61 (9) ◽  
pp. 439-456
Author(s):  
Harald Stumpf

Based on the assumption that electroweak bosons, leptons and quarks possess a substructure of elementary fermionic constituents, in previous papers the effect of CP-symmetry breaking on the effective dynamics of these particles was calculated. Motivated by the phenomenological procedure in this paper, isospin symmetry breaking will be added and the physical consequences of these calculations will be discussed. The dynamical law of the fermionic constituents is given by a relativistically invariant nonlinear spinor field equation with local interaction, canonical quantization, selfregularization and probability interpretation. The corresponding effective dynamics is derived by algebraic weak mapping theorems. In contrast to the commonly applied modifications of the quark mass matrices, CP-symmetry breaking is introduced into this algebraic formalism by an inequivalent vacuum with respect to the CP-invariant case, represented by a modified spinor field propagator. This leads to an extension of the standard model as effective theory which contains besides the “electric” electroweak bosons additional “magnetic” electroweak bosons and corresponding interactions. If furthermore the isospin invariance of the propagator is broken too, it will be demonstrated in detail that in combination with CP-symmetry breaking this induces a considerable modification of electroweak nuclear reaction rates.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Ufuk Aydemir ◽  
Tanumoy Mandal

We investigate the possibility of TeV-scale scalars as low energy remnants arising in the nonsupersymmetric SO(10) grand unification framework where the field content is minimal. We consider a scenario where the SO(10) gauge symmetry is broken into the gauge symmetry of the Standard Model (SM) through multiple stages of symmetry breaking, and a colored and hypercharged scalar χ picks a TeV-scale mass in the process. The last stage of the symmetry breaking occurs at the TeV-scale where the left-right symmetry, that is, SU(2)L⊗SU(2)R⊗U(1)B-L⊗SU(3)C, is broken into that of the SM by a singlet scalar field S of mass MS~1 TeV, which is a component of an SU(2)R-triplet scalar field, acquiring a TeV-scale vacuum expectation value. For the LHC phenomenology, we consider a scenario where S is produced via gluon-gluon fusion through loop interactions with χ and also decays to a pair of SM gauge bosons through χ in the loop. We find that the parameter space is heavily constrained from the latest LHC data. We use a multivariate analysis to estimate the LHC discovery reach of S into the diphoton channel.


2011 ◽  
Vol 26 (07n08) ◽  
pp. 1305-1326 ◽  
Author(s):  
DEBASISH BORAH

We study various possible Supersymmetric Left–Right (SUSYLR) models with Higgs doublets carrying B-L charge ±1: with single step symmetry breaking down to the Minimal Supersymmetric Standard Model (MSSM) as well as multistep symmetry breaking. Single step symmetry breaking can be achieved with the minimal field content of just Higgs doublet and bidoublets whereas multistep symmetry breaking can be realized only at the cost of including additional Higgs superfields. However, going beyond the minimal field content comes up with the exciting possibility of TeV scale intermediate symmetry which can have important implications in the ongoing collider experiments. We show that spontaneous parity violation can be achieved naturally in all these models and R-parity is spontaneously broken by the vacuum expectation value of B-L odd Higgs doublets. The tiny neutrino mass can arise from a double seesaw mechanism in the presence of additional singlet or triplet fermions. We show that gauge coupling unification can be achieved in these models with the possibility of TeV scale intermediate symmetry in some specific nonminimal versions.


2003 ◽  
Vol 58 (9-10) ◽  
pp. 481-490 ◽  
Author(s):  
H. Stumpf

Generalized de Broglie-Bargmann-Wigner (GBBW)-equations are part of the derivation of effective theories for composite particles based on a nonlinear spinor field model with canonical quantization, relativistic invariant selfregularization and probability interpretation. Owing to the close connection between the model itself and its GBBW-equations the behavior of both is studied under PCT-transformations leading to the proof of invariance against such tranformation of the field Hamiltonian as well as of the GBBW-equations. Finally the algebraic formulation of the operators of these transformations in general state spaces is derived as the nonperturbative algebraic treatment of the model is referred to such spaces which are inequivalent to the Fock space representation of perturbation theory.


2005 ◽  
Vol 60 (10) ◽  
pp. 696-718
Author(s):  
Harald Stumpf

Based on the assumption that electroweak bosons, leptons and quarks possess a substructure of elementary fermionic constituents, in a previous paper it was demonstrated that under CP-symmetry breaking “electric” and “magnetic” electroweak bosons coexist, where the latter transmit magnetic monopole interactions. In this paper the calculation is extended to the derivation of the effective theory for electroweak bosons and leptons. It is shown that under the influence of CP-symmetry breaking charged leptons are transmuted into dyons, the interactions of which are mediated by electric and magnetic electroweak bosons. The dynamical law of the fermionic constituents is assumed to be given by a relativistically invariant nonlinear spinor field theory with local interaction, canonical quantization, selfregularization and probability interpretation. The corresponding effective theory is derived by means of weak mapping theorems and turns out to be an extension of the Standard model for dyons where owing to CP-violation SU(2)-symmetry is simultaneously broken. A mechanism of inducing CP-symmetry violation in the low energy range is proposed


Author(s):  
Michael Kachelriess

Noethers theorem shows that continuous global symmetries lead classically to conservation laws. Such symmetries can be divided into spacetime and internal symmetries. The invariance of Minkowski space-time under global Poincaré transformations leads to the conservation of the four-momentum and the total angular momentum. Examples for conserved charges due to internal symmetries are electric and colour charge. The vacuum expectation value of a Noether current is shown to beconserved in a quantum field theory if the symmetry transformation keeps the path-integral measure invariant.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 795
Author(s):  
Vincent Lahoche ◽  
Mohamed Ouerfelli ◽  
Dine Ousmane Samary ◽  
Mohamed Tamaazousti

The tensorial principal component analysis is a generalization of ordinary principal component analysis focusing on data which are suitably described by tensors rather than matrices. This paper aims at giving the nonperturbative renormalization group formalism, based on a slight generalization of the covariance matrix, to investigate signal detection for the difficult issue of nearly continuous spectra. Renormalization group allows constructing an effective description keeping only relevant features in the low “energy” (i.e., large eigenvalues) limit and thus providing universal descriptions allowing to associate the presence of the signal with objectives and computable quantities. Among them, in this paper, we focus on the vacuum expectation value. We exhibit experimental evidence in favor of a connection between symmetry breaking and the existence of an intrinsic detection threshold, in agreement with our conclusions for matrices, providing a new step in the direction of a universal statement.


Universe ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. 127
Author(s):  
Yuri V. Grats ◽  
Pavel Spirin

The effects of vacuum polarization associated with a massless scalar field near pointlike source with a zero-range potential in three spatial dimensions are analyzed. The “physical” approach consists in the usage of direct delta-potential as a model of pointlike interaction. We use the Perturbation theory in the Fourier space with dimensional regularization of the momentum integrals. In the weak-field approximation, we compute the effects of interest. The “mathematical” approach implies the self-adjoint extension technique. In the Quantum-Field-Theory framework we consider the massless scalar field in a 3-dimensional Euclidean space with an extracted point. With appropriate boundary conditions it is considered an adequate mathematical model for the description of a pointlike source. We compute the renormalized vacuum expectation value ⟨ϕ2(x)⟩ren of the field square and the renormalized vacuum averaged of the scalar-field’s energy-momentum tensor ⟨Tμν(x)⟩ren. For the physical interpretation of the extension parameter we compare these results with those of perturbative computations. In addition, we present some general formulae for vacuum polarization effects at large distances in the presence of an abstract weak potential with finite-sized compact support.


1987 ◽  
Vol 02 (03) ◽  
pp. 713-728 ◽  
Author(s):  
SWEE-PING CHIA

The λϕ4 theory with tachyonic mass is analyzed at T ≠ 0 using an improved one-loop approximation in which each of the bare propagators in the one-loop diagram is replaced by a dressed propagator to take into account the higher loop effects. The dressed propagator is characterized by a temperature-dependent mass which is determined by a self-consistent relation. Renomalization is found to be necessarily temperature-dependent. Real effective potential is obtained, giving rise to real effective mass and real coupling constant. For T < Tc, this is achieved by first shifting the ϕ field by its zero-temperature vacuum expectation value. The effective coupling constant is found to exhibit the striking behavior that it approaches a constant nonzero value as T → ∞.


Sign in / Sign up

Export Citation Format

Share Document