Synthesis and characterization of PbBaGeO4

2015 ◽  
Vol 70 (6) ◽  
pp. 435-440 ◽  
Author(s):  
Lucas L. Petschnig ◽  
Hubert Huppertz

AbstractPbBaGeO4 was prepared by high-temperature solid-state synthesis at 900 °C in a platinum crucible from lead(II) oxide, barium carbonate, and germanium(IV) oxide. This compound crystallizes with the BaNdGaO4 structure type in the orthorhombic space group P212121 (no. 19). The structure was refined from single-crystal X-ray diffraction data: a = 1021.6(2), b = 763.4(2), c = 618.1(2) pm, V = 482.1(2) Å3, and residuals of R1 = 0.0373 and wR2 = 0.0730 for all data. Next to structural data, Raman spectroscopic data of PbBaGeO4 are reported.

Author(s):  
ROGER GUILARD ◽  
VIRGINIE PICHON-PESME ◽  
HASSANE LACHEKAR ◽  
CLAUDE LECOMTE ◽  
ALLY M. AUKAULOO ◽  
...  

The synthesis and characterization of three monomeric aluminum porphycenes with anionic or σ-bonded axial ligands is reported. The investigated compounds are represented as ( EtioPc ) Al ( CH 3) and ( EtioPc ) AlX where EtioPc represents the dianion of etioporphycene and X = Cl − or OH −. Each synthesized complex was characterized by mass spectrometry. 1 H NMR, IR and UV-visible spectroscopies as well as by electrochemistry. Comparisons are made between the properties of complexes in the aluminum etioporphycene series and related chloro- or methyl σ-bonded Al ( III ) porphyrins containing octaethylporphyrin ( OEP ) or tetraphenylporphyrin ( TPP ) macrocycles. Comparisons are also made between the currently investigated compounds and a previously reported Al ( III ) μ-oxo dimer, [( EtioPc ) Al ]2 O . In addition, the crystal and molecular structure of ( EtioPc ) Al ( CH 3) was determined by X-ray diffraction. The molecular structure of this methyl-σ-bonded aluminum etioporphycene provides the first structural data for an aluminum porphycene compound. The aluminum(III) atom in ( EtioPc ) Al ( CH 3) is pentacoordinated and is located 0.54 Å from the plane of the four N -nitrogens.


2007 ◽  
Vol 62 (5) ◽  
pp. 669-674 ◽  
Author(s):  
Wolfram W. Seidel ◽  
Matthias J. Meel ◽  
Thomas Lügger

Abstract Synthesis and characterization of the alkyne complexes [Co2(CO)6(L)], [W(CO)(L)3] and [Pt(PPh3)2(L)] with L = BnSC2SBn (Bn = benzyl) are described. X-Ray diffraction studies of [W(CO)(L)3] and [Co2(CO)5(L)]2 reveal that the donor ability of the sulfide group depends on the electronic and steric situation in the particular metal complex. The specific donor strength of sulfidesubstituted alkynes in their complexes is discussed considering the IR and NMR spectroscopic data.


2014 ◽  
Vol 69 (6) ◽  
pp. 737-741 ◽  
Author(s):  
Gustavo A. Echeverría ◽  
Oscar E. Piro ◽  
Beatriz S. Parajón-Costa ◽  
Enrique J. Baran

Ammonium acesulfamate, (NH4)C4H4NO4S, was prepared by the reaction of acesulfamic acid and ammonium carbonate in aqueous solution, and characterized by elemental analysis and 1H and 13C NMR spectroscopy. Its crystal and molecular structure was determined by single-crystal X-ray diffraction methods. The substance crystallizes in the orthorhombic space group Pnma with Z = 4 molecules per unit cell. The NH4+ ion generates medium to strong hydrogen bonds with the carbonylic oxygen, the iminic nitrogen and the sulfonyl oxygen atoms of the acesulfamate anion. The FTIR spectrum of the compound was also recorded and is briefly discussed.


1990 ◽  
Vol 45 (4) ◽  
pp. 508-514 ◽  
Author(s):  
B. Nuber ◽  
W. Schatz ◽  
M. L. Ziegler

[CpMo(CO)3]2 (1) (Cp = cyclopentadienyl) reacts with InCl3 in diglyme to yield the oxo-cluster [Cp3Mo3(CO)4(μ-Cl)(μ3-O)] (2) and the cationic oxo-cluster [Cp3Mo3(μ-CO)3(CO)3(μ3-O)]+ as the salt [Cp3Mo3(μ-CO)3(CO)3(μ3-O)][CpMo(CO)3InCl3] (3). The compounds were characterized by elemental analysis, spectroscopic data and X-ray structure analysis. Compound 2 crystallizes in the orthorhombic space group P212121 with a = 1006.0(3), b = 1244.6(4) and c = 1600.8(5) pm, V = 2004.3 x 106 pm3, Z = 4. Compound 3 crystallizes in the monoclinic space group P 21/m with a = 874.4(8), b = 1407(1) and c = 1500(1) pm, β = 92.95(6) , V = 1843 × 106 pm3, Z = 2.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
R. Kefi ◽  
M. Zeller ◽  
F. Lefebvre ◽  
C. Ben Nasr

The crystal structure of the new inorganic-organic hybrid compound [4-CH3C6H4CH2NH3]2[CdCl4] has been determined by single crystal X-ray diffraction. The compound crystallizes in the orthorhombic space group Pnma with lattice parameters a=10.721(2), b=33.986(6), c=5.326(1) Å, β=97.222(1)°, V=1940.8(7) Å3, and Z=4. The framework of the title compound is built upon layers parallel to (010) made up from corner-sharing CdCl6 octahedra. 4-Methylbenzylammonium cations are situated between the layers and connect them via an N–H⋯Cl hydrogen bonding network. The Cd atom is located on an inversion centre, and the coordination environment is described as distorted octahedral. Solid state 13C CP-MAS NMR spectroscopy is in agreement with the X-ray structure. DFT calculations allow the attribution of the carbon peaks to the independent crystallographic sites. Thermal analysis and infrared spectroscopy were also used to characterize the complex.


2018 ◽  
Vol 2 (1) ◽  
pp. 7
Author(s):  
S Chirino ◽  
Jaime Diaz ◽  
N Monteblanco ◽  
E Valderrama

The synthesis and characterization of Ti and TiN thin films of different thicknesses was carried out on a martensitic stainless steel AISI 410 substrate used for tool manufacturing. The mechanical parameters between the interacting surfaces such as thickness, adhesion and hardness were measured. By means of the scanning electron microscope (SEM) the superficial morphology of the Ti/TiN interface was observed, finding that the growth was of columnar grains and by means of EDAX the existence of titanium was verified.  Using X-ray diffraction (XRD) it was possible to observe the presence of residual stresses (~ -3.1 GPa) due to the different crystalline phases in the coating. Under X-ray photoemission spectroscopy (XPS) it was possible to observe the molecular chemical composition of the coating surface, being Ti-N, Ti-N-O and Ti-O the predominant ones.


Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 721 ◽  
Author(s):  
Jorge A. Ramírez-Gómez ◽  
Javier Illescas ◽  
María del Carmen Díaz-Nava ◽  
Claudia Muro-Urista ◽  
Sonia Martínez-Gallegos ◽  
...  

Atrazine (ATZ) is an herbicide which is applied to the soil, and its mechanism of action involves the inhibition of photosynthesis. One of its main functions is to control the appearance of weeds in crops, primarily in corn, sorghum, sugar cane, and wheat; however, it is very toxic for numerous species, including humans. Therefore, this work deals with the adsorption of ATZ from aqueous solutions using nanocomposite materials, synthesized with two different types of organo-modified clays. Those were obtained by the free radical polymerization of 4-vinylpyridine (4VP) and acrylamide (AAm) in different stoichiometric ratios, using tetrabutylphosphonium persulfate (TBPPS) as a radical initiator and N,N′-methylenebisacrylamide (BIS) as cross-linking agent. The structural, morphological, and textural characteristics of clays, copolymers, and nanocomposites were determined through different analytical and instrumental techniques, i.e., X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). Adsorption kinetics experiments of ATZ were determined with the modified and synthesized materials, and the effect of the ratio between 4VP and AAm moieties on the removal capacities of the obtained nanocomposites was evaluated. Finally, from these sets of experiments, it was demonstrated that the synthesized nanocomposites with higher molar fractions of 4VP obtained the highest removal percentages of ATZ.


2020 ◽  
Vol 75 (6-7) ◽  
pp. 597-603
Author(s):  
Birgit Fuchs ◽  
Hubert Huppertz

AbstractThe non-centrosymmetric scandium borate ScB6O9(OH)3 was obtained through a high-pressure/high-temperature experiment at 6 GPa and 1473 K. Single-crystal X-ray diffraction revealed that the structure is isotypic to InB6O9(OH)3 containing borate triple layers separated by scandium layers. The compound crystallizes in the space group Fdd2 with the lattice parameters a = 38.935(4), b = 4.4136(4), and c = 7.6342(6) Å. Powder X-ray diffraction and vibrational spectroscopy were used to further characterize the compound and verify the proposed structure solution.


2012 ◽  
Vol 600 ◽  
pp. 174-177 ◽  
Author(s):  
Jian Fei Xia ◽  
Zong Hua Wang ◽  
Yan Zhi Xia ◽  
Fei Fei Zhang ◽  
Fu Qiang Zhu ◽  
...  

Zirconia-graphene composite (ZrO2-G) has been successfully synthesized via decomposition of ZrOCl2•6H2O in a water-isopropanol system with dispersed graphene oxide (GO) utilizing Na2S as a precursor could enable the occurrence of the deposition of Zr4+ and the deoxygenation of GO at the same time. Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) techniques were used to characterize the samples. It was found that graphene were fully coated with ZrO2, and the ZrO2 existing in tetragonal phase, which resulted in the formation of two-dimensional composite.


2011 ◽  
Vol 197-198 ◽  
pp. 456-459
Author(s):  
Xian Ming Liu ◽  
Wen Liang Gao

Spinel-perovskite multiferroics of NiFe2O4/BiFeO3 nanoparticles were prepared by modified Pechini method. The structure and morphology of the composites were examined by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that the composites consisted of spinel NiFe2O4 and perovskite BiFeO3 after annealed at 700°C for 2h, and the particle size ranges from 40 to 100nm. VSM and ME results indicated that the nanocomposites exhibited both tuning magnetic properties and a ME effect. The ME effect of the nanocomposites strongly depended on the magnetic bias and magnetic field frequency.


Sign in / Sign up

Export Citation Format

Share Document