scholarly journals Study on the chemical constituents of Dacrydium elatum and their cytotoxic activity

2019 ◽  
Vol 74 (2) ◽  
pp. 197-201
Author(s):  
Tran Thi Phuong Thao ◽  
Nguyen Thi Lieu ◽  
Pham Thi Ninh ◽  
Tran Van Chien ◽  
Dinh Thi Phong ◽  
...  

AbstractFrom an ethyl acetate extract of twigs and barks of Dacrydium elatum a new diterpenoid named dacrydianone (1), together with lambertic acid (2), three ecdysteroids: 20-hydroxyecdysone (3), ajugasterone C (4), ponasterone A (5), and daucosterol (6), has been isolated. Their structures were elucidated by an extensive analysis of the UV/Vis, FT-IR, MS and NMR spectra as well as comparison with those in published literature. The EtOAc extract and the isolated compounds 1–5 were evaluated for their cytotoxicity on four cancer cell lines: breast cancer (MCF-7), lung cancer (Lu-1), liver cancer (HepG2) and human oral cancer (KB). The EtOAc extract and compound 2 showed a medium activity on four tested cancer cell lines, while compounds 3 and 5 exhibited week activity on these cell lines. Compounds 1 and 4 did not show activity on the tested cell lines.

2013 ◽  
Vol 8 (10) ◽  
pp. 1934578X1300801 ◽  
Author(s):  
Olga Leuner ◽  
Jaroslav Havlik ◽  
Milos Budesinsky ◽  
Vladimir Vrkoslav ◽  
Jessica Chu ◽  
...  

Investigations into the chemical constituents of the seeds of the neglected tuber crop Pachyrhizus tuberosus (Leguminosae) resulted in the isolation of seven components: five rotenoids [12a-hydroxyerosone (1), 12a-hydroxydolineone (2), erosone (3), 12a-hydroxyrotenone (4) and rotenone (6)], a phenylfuranocoumarin [pachyrrhizine (5)] and an isoflavanone [neotenone (7)]. The compounds were isolated using several chromatography techniques and characterized and verified by NMR and HPLC/MS. The MTT assay was used to examine the selective cytotoxic effects of the methanolic P. tuberosus extract and isolated compounds in two human cancer cell lines [breast (MCF-7) and colorectal (HCT-116)] and in non-transformed human fibroblasts (MRC-5); IC50 values were calculated. The methanolic P. tuberosus extract displayed respectable cytotoxic effects against HCT-116 and MCF-7 cells with IC50 values of 7.3 and 6.3 μg/mL, respectively. Of the compounds, 6 exacted greatest cytotoxicity and selectivity towards the cancer cell lines tested, yielding IC50 values of 0.3 μg/mL against both MCF-7 and HCT-116 cells, and a 6-fold reduced activity against MRC-5 fibroblasts. Compound 4 also demonstrated cytotoxicity against MCF-7 and HCT-116 (1.1 and 1.8 μg/mL, respectively), and reduced cytotoxicity towards MRC-5 cells (7.5 μg/mL). The results revealed from the in vitro cytotoxic MTT assay are worthy of further antitumor investigation.


2021 ◽  
Vol 25 (06) ◽  
pp. 1161-1172
Author(s):  
Sang Koo Park

Rheum emodi Wall. ex Meissn is a popular medicinal herb having wide application in traditional medicine for treating of several diseases. The present study was aimed to identify and isolate phytochemicals present in ethyl acetate extract fraction of R. emodi and to evaluate the anticancer and anti-inflammatory activities of water/organic solvent fractions and isolated compounds of R. emodi rhizome extracts. Based on the structure, flavonoid compound i.e., Myricitrin (sym. Myricetin 3- rhamnoside), myricetin 3-galloylrhamnoside and myricetin were identified to be present in ethyl acetate extract. The molecular weight of compound 1 cannot be identified; while compound 5 remained unknown as there was not enough evidence to propose its structure. The isolated compounds and different solvent fractions were tested for their anticancer and antiinflammatory activities. Among Myricetins derivatives, particularly unknown compounds significantly induced the apoptosis and restrained the proliferation of cancer cell lines (A549 and MCF-7) and inhibited the LPS induced NO production (proinflammatory mediator), IL-6 activity, IL-1β and TNF-α (cytokines) activity in RAW 264.7 macrophages in a dose dependent manner and was effective even at lower concentration (50 µg/mL). Similarly, the higher concentration of aqueous and solvent fractions exhibited strong cytotoxic and anti-inflammatory activities. However, water and dichloromethane fractions were most effective in inhibiting the anticancer activities in A549 and MCF-7 cancer cell lines, respectively. At lower concentration (50 and 100 µg/mL), highest inhibition activity for NO, IL-6 and IL-1β was noted with ethyl acetate fractions and n-Hexane fractions; while water and n-Butanol (fractions) strongly inhibited the TNF-α activity at lower (100 µg/mL) and high (200 µg/mL) concentration, respectively. In conclusion, the isolated compounds from R. emodi rhizome extracts and its rhizome solvent fractions exhibit strong anti-cancer and anti-inflammatory activities and can be used to develop chemotherapeutics and anti-inflammation drugs. © 2021 Friends Science Publishers


Molecules ◽  
2018 ◽  
Vol 23 (7) ◽  
pp. 1807 ◽  
Author(s):  
Yan Wang ◽  
James Shen ◽  
Yuk Chan ◽  
Wing Ho

Imperata cylindrica (L.) Raeusch. (IMP) aerial part ethyl acetate extract has anti-proliferative, pro-apoptotic, and pro-oxidative effects towards colorectal cancer in vitro. The chemical constituents of IMP aerial part ethyl acetate extract were isolated using high-performance liquid chromatography (HPLC) and identified with tandem mass spectrometry (ESI-MS/MS) in combination with ultraviolet-visible spectrophotometry and 400 MHz NMR. The growth inhibitory effects of each identified component on BT-549 (breast) and HT-29 (colon) cancer cell lines were evaluated after 48/72 h treatment by MTT assay. Four isolated compounds were identified as trans-p-Coumaric acid (1); 2-Methoxyestrone (2); 11, 16-Dihydroxypregn-4-ene-3, 20-dione (3); and Tricin (4). Compounds (2), (3), and (4) exhibited considerable growth inhibitory activities against BT-549 and HT-29 cancer cell lines. Compounds (2), (3), and (4) are potential candidates for novel anti-cancer agents against breast and colorectal cancers.


2010 ◽  
Vol 65 (10) ◽  
pp. 1284-1288 ◽  
Author(s):  
Tran Thi Minh ◽  
Nguyen Thi Hoang Anh ◽  
Vu Dao Thang ◽  
Tran Van Sung

Two new triterpenoids, named 7α,21α-dihydroxyfriedelane-3-one (1) and 7α,29-dihydroxyfriedelane- 3-one (2) have been isolated from the ethyl acetate extract of the stems of Salacia chinensis besides the known triterpenoid 21α,30-dihydroxyfriedelane-3-one (3). The structures of the isolated compounds were elucidated on the basis of spectral analysis. Eight triterpenoids from this plant have been tested against the four cancer cell lines Hep-G2, LU, KB, and MCF-7. The new compound 1 showed good activity against all four tested cell lines.


2020 ◽  
Author(s):  
SHEHLA ADHAMI ◽  
Humaira Farooqi ◽  
MALIK ZAINUL ABDIN ◽  
RAM PRASAD ◽  
ASRAR AHMAD MALIK

Abstract Background Chlorophytum comosum popularly known as Spider Ivy is an important medicinal plant in traditional Chinese medicine utilized in the treatment of many ailments, however its detailed chemical composition and biological activity is not much explored. The present study aims to identify different chemical constituents present in roots and leaves of Chlorophytum comosum and investigates its antioxidant, antiproliferative and haemolytic effects on breast (MCF-7) and lung cancer cell lines (A549, H1299) as compared to normal lung (L-132) cell lines. Methods Chemical constituents from aqueous roots and leaves extracts were identified using LC-ESI-MS/GC-MS. The identified compounds were annotated based on match of mass spectral database with the literature using NIST 14 and METLIN databases. Antioxidant activity was checked using DPPH, FRAP and TPC assays. The antiproliferative effects of ethanolic roots and leaf extracts of Chlorophytum comosum were measured by MTT assay on breast (MCF-7), lung cancer (A549 & H1299) and normal lung (L-132) cell lines. The toxicity studies of the extracts were carried out using Haemolytic assay. Results GC-MS analysis identified 34 new metabolites in roots and 17 from leaves, while as 17 compounds from roots and 7 from leaves were detected by LC-ESI-MS. Significant antiproliferative effects were observed on MCF-7 & A549 cell lines with IC50 values ranging from 31.94 µg/ml to 77.84 µg/ml while no marked response was observed against normal cell line. Haemolysis studies revealed no significant toxicity of the extracts towards the biological system. Conclusion Our study is the first preliminary report on the detailed chemical composition and antiproliferative potential of Chlorophytum comosum, indicating significant specific antiproliferative activities against lung (A549) and breast (MCF-7) cancer cell lines. However, further studies are required to understand the mechanism involved in cytotoxic properties of Chlorophytum comosum.


2018 ◽  
Vol 8 (3) ◽  
pp. 159 ◽  
Author(s):  
Meghan Fragis ◽  
Abdulmonem I. Murayyan ◽  
Suresh Neethirajan

Background: Breast cancer is the most commonly diagnosed cancer and the second leading cause of cancer deaths among Canadian women. Cancer management through changes in lifestyle, such as increased intake of foods rich in dietary flavonoids, have been shown to decrease the risk associated with breast, liver, colorectal, and upper-digestive cancers in epidemiologic studies. Onions are high in flavonoid content and one of the most common vegetables. Additionally, onions are used in most Canadian cuisines.Methods: We investigated the effect of five prominent Ontario grown onion (Stanley, Ruby Ring, LaSalle, Fortress, and Safrane) extracts on two subtypes of breast cancer cell lines: a triple negative breast cancer line MDA-MB-231 and an ER+ breast cancer line MCF-7.Results: These onion extracts elicited strong anti-proliferative, anti-migratory, and cytotoxic activities on both the cancer cell lines. Flavonoids present in these onion extracts induced apoptosis, cell cycle arrest in the G2/M phase, and a reduction in mitochondrial membrane potential at dose-dependent concentrations. Onion extracts were more effective against MDA-MB-231 compared to the MCF-7 cell line. Conclusion: In this study, we investigated the extracts synthesized from Ontario-grown onion varieties in inducing anti-migratory, cytostatic, and cytotoxic activities in two sub-types of human breast cancer cell lines. Anti-tumor activity of these extracts depends upon the varietal and can be formulated into nutraceuticals and functional foods for the wellbeing of cancer patients. Overall, the results suggest that onion extracts are a good source of flavonoids with anti-cancerous properties.Keywords: onion extracts; flavonoids; anti-proliferative; breast cancer; cytotoxic activity


2020 ◽  
Vol 16 ◽  
Author(s):  
Tran Khac Vu ◽  
Nguyen Thi Thanh ◽  
Nguyen Van Minh ◽  
Nguyen Huong Linh ◽  
Nguyen Thi Phương Thao ◽  
...  

Background: Target-based approach to drug discovery currently attracts a great deal of interest from medicinal chemists in anticancer drug discovery and development. Histone deacetylase (HDAC) inhibitors represent an extensive class of targeted anti-cancer agents. Among the most explored structure moieties, hydroxybenzamides and hydroxypropenamides have been demonstrated to have potential HDAC inhibitory effects. Several compounds of these structural classes have been approved for clinical uses to treat different types of cancer, such as vorinostat and belinostat. Aims: This study aims at developing novel HDAC inhibitors bearing conjugated quinazolinone scaffolds with potential cytotoxicity against different cancer cell lines. Method: A series of novel N-hydroxyheptanamides incorporating conjugated 6-hydroxy-2 methylquinazolin-4(3H)- ones (15a-l) was designed, synthesized and evaluated for HDAC inhibitory potency as well as cytotoxicity against three human cancer cell lines, including HepG-2, MCF-7 and SKLu-1. Molecular simulations were finally performed to gain more insight into the structure-activity. relationships. Results: It was found that among novel conjugated quinazolinone-based hydroxamic acids synthesized, compounds 15a, 15c and 15f were the most potent, both in terms of HDAC inhibition and cytotoxicity. Especially, compound 15f displayed up to nearly 4-fold more potent than SAHA (vorinostat) in terms of cytotoxicity against MCF-7 cell line with IC50 value of 1.86 µM, and HDAC inhibition with IC50 value of 6.36 µM. Docking experiments on HDAC2 isozyme showed that these compounds bound to HDAC2 with binding affinities ranging from -10.08 to -14.93 kcal/mol compared to SAHA (-15.84 kcal/mol). It was also found in this research that most of the target compounds seemed to be more cytotoxic toward SKLu-1than MCF-7 and HepG-2. Conclusion: The resesrch results suggest that some hydroxamic acids could emerge for further evaluation and the results are well served as basics for further design of more potent HDAC inhibitors and antitumor agents.


2020 ◽  
Vol 19 (16) ◽  
pp. 2010-2018
Author(s):  
Youstina W. Rizzk ◽  
Ibrahim M. El-Deen ◽  
Faten Z. Mohammed ◽  
Moustafa S. Abdelhamid ◽  
Amgad I.M. Khedr

Background: Hybrid molecules furnished by merging two or more pharmacophores is an emerging concept in the field of medicinal chemistry and drug discovery. Currently, coumarin hybrids have attracted the keen attention of researchers to discover their therapeutic capability against cancer. Objective: The present study aimed to evaluate the in vitro antitumor activity of a new series of hybrid molecules containing coumarin and quinolinone moieties 4 and 5 against four cancer cell lines. Materials and Methods: A new series of hybrid molecules containing coumarin and quinolinone moieties, 4a-c and 5a-c, were synthesized and screened for their cytotoxicity against prostate PC-3, breast MCF-7, colon HCT- 116 and liver HepG2 cancer cell lines as well as normal breast Hs-371 T. Results: All the synthesized compounds were assessed for their in vitro antiproliferative activity against four cancer cell lines and several compounds were found to be active. Further in vitro cell cycle study of compounds 4a and 5a revealed MCF-7 cells arrest at G2 /M phase of the cell cycle profile and induction apoptosis at pre-G1 phase. The apoptosis-inducing activity was evidenced by up-regulation of Bax protein together with the downregulation of the expression of Bcl-2 protein. The mechanism of cytotoxic activity of compounds 4a and 5a correlated to its topoisomerase II inhibitory activity. Conclusion: Hybrid molecules containing coumarin and quinolinone moieties represents a scaffold for further optimization to obtain promising anticancer agents.


2019 ◽  
Vol 9 (4) ◽  
pp. 341-348 ◽  
Author(s):  
Ibrahim Awad Mohammed ◽  
Muhammad Nadeem Akhtar ◽  
Foo Jhi Biau ◽  
Yin Sim Tor ◽  
Seema Zareen ◽  
...  

<P>Background: Breast cancer and human colon cancer are the most common types of cancer in females and males, respectively. Breast cancer is the most common type of cancer after lung and colon cancers. Natural products are an important source for drug discovery. Boesenbergia rotunda (L.) Mansf. is commonly known as finger root, belonging to the Zingiberaceae family. </P><P> Objective: The aim of this study to isolate some natural compounds from the rhizomes of B. rotunda (L.) Mansf., and to investigate their cytotoxicity against the human triple-negative breast cancer cell (MDA-MB-231) and HT-29 colon cancer cell lines. </P><P> Methods: The dried rhizomes of B. rotunda were extracted with methanol. The methanolic extract was further used for solvent-solvent extraction. Bioassay-guided extraction and isolation of the rhizomes of the B. rotunda exhibited cytotoxic properties of hexane and dichloromethane fractions. </P><P> Results: Six major chemical constituents, pinostrobin (1), pinostrobin chalcone (2), cardamonin (3), 4,5-dihydrokawain (4), pinocembrin (5), and alpinetin (6) were isolated from the rhizomes of the B. rotunda. All the chemical constituents were screened against the human triple-negative breast cancer cell (MDA-MB-231) and HT-29 colon cancer cell lines. The compound cardamonin (3) (IC50 = 5.62&#177;0.61 and 4.44&#177;0.66 &#181;g/mL) and pinostrobin chalcone (2), (IC50 = 20.42&#177;2.23 and 22.51&#177;0.42 μg/mL) were found to be potent natural cytotoxic compounds against MDA-MB-231 and HT-29 colon cancer cell lines, respectively. </P><P> Conclusion: Cardamonin (3) and pinostrobin chalcone (2) were found to be the most potential natural compounds against breast cancer cell line MDA-MB-231 and colon cancer HT-29 cell line.</P>


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3923
Author(s):  
Adel A.-H. Abdel-Rahman ◽  
Amira K. F. Shaban ◽  
Ibrahim F. Nassar ◽  
Dina S. EL-Kady ◽  
Nasser S. M. Ismail ◽  
...  

New pyridine, pyrazoloyridine, and furopyridine derivatives substituted with naphthyl and thienyl moieties were designed and synthesized starting from 6-(naphthalen-2-yl)-2-oxo-4-(thiophen-2-yl)-1,2-dihydropyridine-3-carbonitrile (1). The chloro, methoxy, cholroacetoxy, imidazolyl, azide, and arylamino derivatives were prepared to obtain the pyridine-−C2 functionalized derivatives. The derived pyrazolpyridine-N-glycosides were synthesized via heterocyclization of the C2-thioxopyridine derivative followed by glycosylation using glucose and galactose. The furopyridine derivative 14 and the tricyclic pyrido[3′,2′:4,5]furo[3,2-d]pyrimidine 15 were prepared via heterocyclization of the ester derivative followed by a reaction with formamide. The newly synthesized compounds were evaluated for their ability to in vitro inhibit the CDK2 enzyme. In addition, the cytotoxicity of the compounds was tested against four different human cancer cell lines (HCT-116, MCF-7, HepG2, and A549). The CDK2/cyclin A2 enzyme inhibitory results revealed that pyridone 1, 2-chloro-6-(naphthalen-2-yl)-4-(thiophen-2-yl)nicotinonitrile (4), 6-(naphthalen-2-yl)-4-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridin-3-amine (8), S-(3-cyano-6-(naphthaen-2-yl)-4-(thiophen-2-yl)pyridin-2-yl) 2-chloroethanethioate (11), and ethyl 3-amino-6-(naphthalen-2-yl)-4-(thiophen-2-yl)furo[2,3-b]pyridine-2-carboxylate (14) are among the most active inhibitors with IC50 values of 0.57, 0.24, 0.65, 0.50, and 0.93 µM, respectively, compared to roscovitine (IC50 0.394 μM). Most compounds showed significant inhibition on different human cancer cell lines (HCT-116, MCF-7, HepG2, and A549) with IC50 ranges of 31.3–49.0, 19.3–55.5, 22.7–44.8, and 36.8–70.7 μM, respectively compared to doxorubicin (IC50 40.0, 64.8, 24.7 and 58.1 µM, respectively). Furthermore, a molecular docking study suggests that most of the target compounds have a similar binding mode as a reference compound in the active site of the CDK2 enzyme. The structural requirements controlling the CDK2 inhibitory activity were determined through the generation of a statistically significant 2D-QSAR model.


Sign in / Sign up

Export Citation Format

Share Document