d- and s-orbital populations in the d block: unbound atoms in physical vacuum versus chemical elements in condensed matter. A Dronskowski-population analysis

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Kaixuan Chen ◽  
Wan-Lu Li ◽  
W. H. Eugen Schwarz

Abstract The electron configurations of Ca, Zn and the nine transition elements M in between (and their heavier homologs) are reviewed on the basis of density functional theory and experimental facts. The d-s orbital energy and population patterns are systematically diverse. (i) The dominant valence electron configuration of most free neutral atoms M0 of groups g = 2–12 is 3d g−2 4s 2 (textbook rule), or 3d g−14s 1. (ii) Formal M q+ cations in chemical compounds have the dominant configuration 3d g−q 4s 0 (basic concept of transition metal chemistry). (iii) M0 atoms in metallic phases [M∞] of hcp, ccp(fcc) and bcc structures have intermediate populations near 3d g−1 4s 1 (lower d populations for Ca (ca. ½) and Zn (ca. 10)). Including the 4p valence orbitals, the dominant metallic configuration is 3d g−δ 4(sp) δ with δ ≈ 1.4 (±0.2) throughout (except for Zn). (iv) The 3d,4s population of atomic clusters M m varies for increasing m smoothly from single-atomic 3d g−24s 2 toward metallic 3d g−14s 1. – The textbook rule for the one-electron energies, i.e., ns < (n−1)d, holds ‘in a broader sense’ for the s block, but in general not for the d block, and never for the p block. It is more important to teach realistic atomic orbital (AO) populations such as the ones given above.

2003 ◽  
Vol 81 (6) ◽  
pp. 542-554 ◽  
Author(s):  
Petar M Mitrasinovic

There is a fundamental interest in the investigation of the interfacial interactions and charge migration processes between organic molecules and metallic surfaces from a theoretical standpoint. Quantum mechanical (QM) concepts of bonding are contrasted, and the vital importance of using combined QM methods to explore the nature of the interfacial interactions is established. At the one-electron level, the charge distribution and nature of bonded interactions at the AN–Cu9(100) (neutral and charged (–1)) interfaces are investigated by both the Becke (B) – Vosko (V) – Wilk (W) – Nusair (N)/DZVP density functional theory (DFT) method and the MP2/6–31+G* strategy within the conceptual framework provided by natural bond orbital (NBO) – natural atomic orbital (NAO) population analysis and Atoms-In-Molecules (AIM) theory. By this approach, the interfacial interactions are given physical definitions free of any assumptions and are visualized by using the topological features of the total electron density. A natural link between the electron density on the one side and the shapes (not energies) of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) on the other side is clarified. The question of whether the spatial extents of the HOMO and LUMO resemble the corresponding spatial maps of the negative (charge locally concentrated) and positive (charge locally depleted) Laplacian of the total electron density in [AN–Cu9(100)]–1 is addressed.Key words: AN–Cu9(100) interfaces, NBO–NAO population, electron distribution, AIM, bonded interactions.


2007 ◽  
Vol 60 (9) ◽  
pp. 691 ◽  
Author(s):  
Richard D. Harcourt

With ψ1 = y + k1a + b, ψ2 = y – b, and ψ3 = y – k3a + b as Y–A and A–B bonding, non-bonding, and antibonding three-centre molecular orbitals for a symmetrical Y–A–B type bonding unit with overlapping atomic orbitals y, a, and b, it is deduced that the maximum value for the A atom valence, (VA = Vab + Vay), is (a) 4(3 – 2√2) = 0.6863 for the one-electron and five-electron configurations Φ(1) = (ψ1)1 and Φ(5) = (ψ1)2ψ2)2(ψ3)1; (b) 8(3 – 2√2) = 1.3726 for the two-electron and four-electron configurations Φ(2) = (ψ1)2 and Φ(4) = (ψ1)2(ψ2)2; and (c) 4/3 for the three-electron configuration Φ(3) = (ψ1)2(ψ2)1. Thus for each of the three-centre molecular orbital configurations, the A-atom can exhibit increased valence, or electronic hypervalence, relative to the valence for an A-atom in a two-centre molecular orbital configuration. When k1 ≠ 0 for Φ(1) and k3 ≠ 0 for Φ(5), the A-atom odd-electron charge is not equal to zero. This odd-electron charge is available for (fractional) electron-pair bonding to a fourth atom X, to give an additional contribution, Va, to the valence. The resulting maximum value for the A-atom valence (VA = Vab + Vay + Va) is equal to 1.2020 for each of Φ(1) and Φ(5). A-atom valencies are calculated for the three-centre bonding units for several molecules and ions. The expressions for VA = Vab + Vay were derived with atomic orbital overlap integrals omitted. The present paper shows how the theory is modified when these integrals are included.


2019 ◽  
Author(s):  
Jose Julio Gutierrez Moreno ◽  
Marco Fronzi ◽  
Pierre Lovera ◽  
alan O'Riordan ◽  
Mike J Ford ◽  
...  

<p></p><p>Interfacial metal-oxide systems with ultrathin oxide layers are of high interest for their use in catalysis. In this study, we present a density functional theory (DFT) investigation of the structure of ultrathin rutile layers (one and two TiO<sub>2</sub> layers) supported on TiN and the stability of water on these interfacial structures. The rutile layers are stabilized on the TiN surface through the formation of interfacial Ti–O bonds. Charge transfer from the TiN substrate leads to the formation of reduced Ti<sup>3+</sup> cations in TiO<sub>2.</sub> The structure of the one-layer oxide slab is strongly distorted at the interface, while the thicker TiO<sub>2</sub> layer preserves the rutile structure. The energy cost for the formation of a single O vacancy in the one-layer oxide slab is only 0.5 eV with respect to the ideal interface. For the two-layer oxide slab, the introduction of several vacancies in an already non-stoichiometric system becomes progressively more favourable, which indicates the stability of the highly non-stoichiometric interfaces. Isolated water molecules dissociate when adsorbed at the TiO<sub>2</sub> layers. At higher coverages the preference is for molecular water adsorption. Our ab initio thermodynamics calculations show the fully water covered stoichiometric models as the most stable structure at typical ambient conditions. Interfacial models with multiple vacancies are most stable at low (reducing) oxygen chemical potential values. A water monolayer adsorbs dissociatively on the highly distorted 2-layer TiO<sub>1.75</sub>-TiN interface, where the Ti<sup>3+</sup> states lying above the top of the valence band contribute to a significant reduction of the energy gap compared to the stoichiometric TiO<sub>2</sub>-TiN model. Our results provide a guide for the design of novel interfacial systems containing ultrathin TiO<sub>2</sub> with potential application as photocatalytic water splitting devices.</p><p></p>


2019 ◽  
Author(s):  
Hassan Harb ◽  
Lee Thompson ◽  
Hrant Hratchian

Lanthanide hydroxides are key species in a variety of catalytic processes and in the preparation of corresponding oxides. This work explores the fundamental structure and bonding of the simplest lanthanide hydroxide, LnOH (Ln=La-Lu), using density functional theory calculations. Interestingly, the calculations predict that all structures of this series will be linear. Furthermore, these results indicate a valence electron configuration featuring an occupied sigma orbital and two occupied pi orbitals for all LnOH compounds, suggesting that the lanthanide-hydroxide bond is best characterized as a covalent triple bond.


2019 ◽  
Author(s):  
Hassan Harb ◽  
Lee Thompson ◽  
Hrant Hratchian

Lanthanide hydroxides are key species in a variety of catalytic processes and in the preparation of corresponding oxides. This work explores the fundamental structure and bonding of the simplest lanthanide hydroxide, LnOH (Ln=La-Lu), using density functional theory calculations. Interestingly, the calculations predict that all structures of this series will be linear. Furthermore, these results indicate a valence electron configuration featuring an occupied sigma orbital and two occupied pi orbitals for all LnOH compounds, suggesting that the lanthanide-hydroxide bond is best characterized as a covalent triple bond.


2019 ◽  
Author(s):  
Brandon B. Bizzarro ◽  
Colin K. Egan ◽  
Francesco Paesani

<div> <div> <div> <p>Interaction energies of halide-water dimers, X<sup>-</sup>(H<sub>2</sub>O), and trimers, X<sup>-</sup>(H<sub>2</sub>O)<sub>2</sub>, with X = F, Cl, Br, and I, are investigated using various many-body models and exchange-correlation functionals selected across the hierarchy of density functional theory (DFT) approximations. Analysis of the results obtained with the many-body models demonstrates the need to capture important short-range interactions in the regime of large inter-molecular orbital overlap, such as charge transfer and charge penetration. Failure to reproduce these effects can lead to large deviations relative to reference data calculated at the coupled cluster level of theory. Decompositions of interaction energies carried out with the absolutely localized molecular orbital energy decomposition analysis (ALMO-EDA) method demonstrate that permanent and inductive electrostatic energies are accurately reproduced by all classes of XC functionals (from generalized gradient corrected (GGA) to hybrid and range-separated functionals), while significant variance is found for charge transfer energies predicted by different XC functionals. Since GGA and hybrid XC functionals predict the most and least attractive charge transfer energies, respectively, the large variance is likely due to the delocalization error. In this scenario, the hybrid XC functionals are then expected to provide the most accurate charge transfer energies. The sum of Pauli repulsion and dispersion energies are the most varied among the XC functionals, but it is found that a correspondence between the interaction energy and the ALMO EDA total frozen energy may be used to determine accurate estimates for these contributions. </p> </div> </div> </div>


2020 ◽  
Vol 17 ◽  
Author(s):  
Sangeeta Srivastava ◽  
Nadeem Ahmad Ansari ◽  
Sadaf Aleem

: Gallic acid is abundantly found in amla (Phyllanthus emblica), a deciduous of the family phyllanthaceae. Gallic acid, the major constituent of the plant was methylated to 3,4,5 trimethoxy gallic acid, which then underwent steglich esterification first with paracetamol and then with 4-hydroxy acetophenone to yield 4-acetamidophenyl 3,4,5-trimethoxybenzoate and 4-acetyl phenyl 3,4,5-trimethoxybenzoate “respectively”. 1H NMR, 13C NMR, UV, FT-IR and mass spectroscopy were used to characterize the synthesized compounds. Density functional theory (B3YLP) using 6-31G (d,p) basis set have been used for quantum chemical calculations. AIM (Atom in molecule) approach depicted weak molecular interactions within the molecules whereas the reactive site and reactivity within the molecule were examined by global and local reactivity descriptors. The HOMO and LUMO energies and frontier orbital energy gap were calculated by time dependant DFT approach using IEFPCM model. Small value for HOMO–LUMO energy gap indicated that easier charge transfer occurs within compound 4. The nucleophilic and electrophilic reactivity were determined by MEP (molecular electrostatic potential) experiment. Polarizability, dipole moment, and first hyperpolarizability values were calculated to depict the NLO (nonlinear optical) property of both the synthesized compounds. The antimicrobial activity was also carried out and broad spectrum antibacterial activity against several strains of bacteria and certain unicellular fungi were exhibited by synthesized compound 3.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5970
Author(s):  
Nabil Al-Zaqri ◽  
Mohammed Suleiman ◽  
Anas Al-Ali ◽  
Khaled Alkanad ◽  
Karthik Kumara ◽  
...  

The exo⇔endo isomerization of 2,5-dimethoxybenzaldehyde was theoretically studied by density functional theory (DFT) to examine its favored conformers via sp2–sp2 single rotation. Both isomers were docked against 1BNA DNA to elucidate their binding ability, and the DFT-computed structural parameters results were matched with the X-ray diffraction (XRD) crystallographic parameters. XRD analysis showed that the exo-isomer was structurally favored and was also considered as the kinetically preferred isomer, while several hydrogen-bonding interactions detected in the crystal lattice by XRD were in good agreement with the Hirshfeld surface analysis calculations. The molecular electrostatic potential, Mulliken and natural population analysis charges, frontier molecular orbitals (HOMO/LUMO), and global reactivity descriptors quantum parameters were also determined at the B3LYP/6-311G(d,p) level of theory. The computed electronic calculations, i.e., TD-SCF/DFT, B3LYP-IR, NMR-DB, and GIAO-NMR, were compared to the experimental UV–Vis., optical energy gap, FTIR, and 1H-NMR, respectively. The thermal behavior of 2,5-dimethoxybenzaldehyde was also evaluated in an open atmosphere by a thermogravimetric–derivative thermogravimetric analysis, indicating its stability up to 95 °C.


Crystals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 13
Author(s):  
Mohd. Muddassir ◽  
Abdullah Alarifi ◽  
Mohd. Afzal

A new complex (Ru(η6-p-cymene)(5-ASA)Cl2) (1) where 5-ASA is 5-aminosalicylic acid has been prepared by reacting the ruthenium arene precursors ((η6-arene)Ru(μ-Cl)Cl)2, with the 5-ASA ligands in a 1:1 ratio. Full characterization of complex 1 was accomplished by elemental analysis, IR, and TGA following the structure obtained from a single-crystal X-ray pattern. The structural analysis revealed that complex 1 shows a “piano-stool” geometry with Ru-C (2.160(5)- 2.208(5)Å), Ru-N (2.159(4) Å) distances, which is similar to equivalents sister complex. Density functional theory (DFT) was used to calculate the significant molecular orbital energy levels, binding energies, bond angles, bond lengths, and spectral data (FTIR, NMR, and UV–VIS) of complex 1, consistent with the experimental results. The IR and UV–VIS spectra of complex 1 were computed using all of the methods and choose the most appropriate way to discuss. Hirshfeld surface analysis was also executed to understand the role of weak interactions such as H⋯H, C⋯H, C-H⋯π, and vdW interactions, which play a significant role in the crystal environment’s stability. Moreover, the luminescence results at room temperature show that complex 1 gives a more intense emission band positioned at 465 nm upon excitation at 330 nm makes it a suitable candidate for the building of photoluminescent material.


Sign in / Sign up

Export Citation Format

Share Document