Studies on the Regulatory Role of trans-Cinnamic Acid on the Activity of the Phenylalanine Ammonia-Lyase (PAL) in Suspension Cultures of Daucus carota L.

1983 ◽  
Vol 38 (5-6) ◽  
pp. 408-412 ◽  
Author(s):  
W. Noé ◽  
H. U. Seitz

In vivo and in vitro experiments were performed in order to study the regulatory role of trans- cinnamic acid and its hydroxylated derivatives (p-coumaric acid, caffeic acid) on the deamina­tion of phenylalanine catalyzed by PAL (EC 4.3.1.5). Trans-cinnamic acid inhibits growth and reduces the content of soluble proteins of anthocyanin-containing carrot cells grown in suspen­sion. There is strong evidence from the polysomal patterns and from the effect of trans-cinnamic acid on protein synthesis in vitro that protein synthesis is inhibited. The kinetic data of PAL clearly demonstrate that trans-cinnamic acid inhibits the enzyme by a noncompetitive mecha­nism. On the contrary, ʟ-α-aminooxy-β-phenylpropionic acid (ʟ-AOPP), a competitive inhibitor of PAL, does not affect protein metabolism.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Tomohiro Shimada ◽  
Yui Yokoyama ◽  
Takumi Anzai ◽  
Kaneyoshi Yamamoto ◽  
Akira Ishihama

AbstractOutside a warm-blooded animal host, the enterobacterium Escherichia coli K-12 is also able to grow and survive in stressful nature. The major organic substance in nature is plant, but the genetic system of E. coli how to utilize plant-derived materials as nutrients is poorly understood. Here we describe the set of regulatory targets for uncharacterized IclR-family transcription factor YiaJ on the E. coli genome, using gSELEX screening system. Among a total of 18 high-affinity binding targets of YiaJ, the major regulatory target was identified to be the yiaLMNOPQRS operon for utilization of ascorbate from fruits and galacturonate from plant pectin. The targets of YiaJ also include the genes involved in the utilization for other plant-derived materials as nutrients such as fructose, sorbitol, glycerol and fructoselysine. Detailed in vitro and in vivo analyses suggest that L-ascorbate and α-D-galacturonate are the effector ligands for regulation of YiaJ function. These findings altogether indicate that YiaJ plays a major regulatory role in expression of a set of the genes for the utilization of plant-derived materials as nutrients for survival. PlaR was also suggested to play protecting roles of E. coli under stressful environments in nature, including the formation of biofilm. We then propose renaming YiaJ to PlaR (regulator of plant utilization).


2017 ◽  
Vol 312 (1) ◽  
pp. E27-E36 ◽  
Author(s):  
Servane Le Plénier ◽  
Arthur Goron ◽  
Athanassia Sotiropoulos ◽  
Eliane Archambault ◽  
Chantal Guihenneuc ◽  
...  

Citrulline (CIT) is an endogenous amino acid produced by the intestine. Recent literature has consistently shown CIT to be an activator of muscle protein synthesis (MPS). However, the underlying mechanism is still unknown. Our working hypothesis was that CIT might regulate muscle homeostasis directly through the mTORC1/PI3K/MAPK pathways. Because CIT undergoes both interorgan and intraorgan trafficking and metabolism, we combined three approaches: in vivo, ex vivo, and in vitro. Using a model of malnourished aged rats, CIT supplementation activated the phosphorylation of S6K1 and 4E-BP1 in muscle. Interestingly, the increase in S6K1 phosphorylation was positively correlated ( P < 0.05) with plasma CIT concentration. In a model of isolated incubated skeletal muscle from malnourished rats, CIT enhanced MPS (from 30 to 80% CIT vs. Ctrl, P < 0.05), and the CIT effect was abolished in the presence of wortmannin, rapamycin, and PD-98059. In vitro, on myotubes in culture, CIT led to a 2.5-fold increase in S6K1 phosphorylation and a 1.5-fold increase in 4E-BP1 phosphorylation. Both rapamycin and PD-98059 inhibited the CIT effect on S6K1, whereas only LY-294002 inhibited the CIT effect on both S6K1 and 4E-BP1. These findings show that CIT is a signaling agent for muscle homeostasis, suggesting a new role of the intestine in muscle mass control.


1985 ◽  
Vol 228 (1) ◽  
pp. 179-185 ◽  
Author(s):  
V R Preedy ◽  
D M Smith ◽  
P H Sugden

Rates of protein synthesis were measured in vivo in several tissues (heart, skeletal muscles, liver, tibia, skin, brain, kidney, lung) of fed rats exposed to O2/N2 (1:9) for 6 h starting at 08:00-11:00 h. Protein synthesis rates were depressed by 15-35% compared with normoxic controls in all of the tissues studied. The decreases were greatest in the brain and the skin. Although hypoxia inhibited gastric emptying, its effects on protein synthesis could probably not be attributed to its induction of a starved state, because protein-synthesis rates in brain and skin were not decreased by a 15-18 h period of starvation initiated at 23:00 h. Furthermore, we showed that protein synthesis was inhibited by hypoxia in the rat heart perfused in vitro, suggesting a direct effect. The role of hypoxia in perturbing tissue nitrogen balance in various physiological and pathological states is discussed.


1992 ◽  
Vol 4 (5) ◽  
pp. 533 ◽  
Author(s):  
G Chaturapanich ◽  
RC Jones ◽  
J Clulow

The objectives were to assess the following in a marsupial: which proteins are synthesized by the different regions of the epididymis and secreted into the lumen of the ductus; the effect of the experimental method on the detection of protein secretion; the role of the testis in regulating the protein synthesis and secretion; and whether any of the secreted proteins may associate with spermatozoa. Samples from untreated animals were collected for examination by perfusing Krebs-bicarbonate through the ductus epididymidis in vivo (microperfusion), and after incorporation of [35S]methionine during incubation of minced duct in vitro. Electrophoresis of the samples showed that the caput and corpus epididymidis (initial segments) secreted most of the proteins that were synthesized and secreted by the epididymal mucosa, and that the cauda epididymidis secreted mainly blood proteins. Also, many more proteins were secreted in vitro than into the microperfusates in vivo, or were found by Jones (1987) in micropuncture samples of epididymal plasma. The synthesis and secretion of five proteins was androgen dependent (M(r) 75,700, 30,000, 18,700, 17,400 and 12,800). Also, the luminal fluids from the testis stimulated the secretion of two proteins (M(r) 46,300 and 36,100) and inhibited the secretion of three proteins (M(r) 43,000, 32,300 and 21,400). Examination of detergent extracts of spermatozoa indicated that they lose three proteins (M(r) 28,000, 30,000 and 47,000) and gain one (M(r) 30,400) during passage through the epididymis. The method of determining protein secretion affected the findings. Protein secretion, its control and its association with spermatozoa are broadly similar in the tammar wallaby to the processes described in eutherian mammals.


Biomolecules ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 588
Author(s):  
Finkelstein

This paper elucidates a close connection between two well-known facts that until now have seemed independent: (i) the quality control (“proofreading”) of the emerging amino acid sequence, occurring during the normal, elongation-factor-dependent ribosomal biosynthesis, which is performed by removing those Aa-tRNAs (aminoacyl tRNAs) whose anticodons are not complementary to the exhibited mRNA codons, and (ii) the in vitro discovered existence of the factor-free ribosomal synthesis of polypeptides. It is shown that a biological role of proofreading is played by a process that is exactly opposite to the step of factor-free binding of Aa-tRNA to the ribosome-exposed mRNA: a factor-free removal of that Aa-tRNA whose anticodon is not complementary to the ribosome-exhibited mRNA codon.


1974 ◽  
Vol 61 (3) ◽  
pp. 401-410 ◽  
Author(s):  
H. W. A. de BRUIJN ◽  
H. J. van der MOLEN

SUMMARY 17α,20α-Dihydroxy-4-pregnen-3-one is a competitive inhibitor of C17,20-lyase activity in rat testicular tissue in vitro and the significance of this inhibition in vitro was evaluated for testosterone biosynthesis in rat and rabbit testis in vivo. It is concluded that 17α,20α-dihydroxy-4-pregnen-3-one is not involved in the regulation of C17,20-activity in vivo, because it was not possible to detect any 17α,20α-dihydroxy-4-pregnen-3-one in rat and rabbit testicular tissue or in testicular venous blood. If present, the levels are lower than 10 pmol/g testis. Levels of 17α-hydroxyprogester-one are in the order of 50 pmol/g testis. The C17,20-lyase has a higher affinity for 17α-hydroxyprogesterone than for 17α,20α-dihydroxy-4-pregnen-3-one and hence inhibition under in-vivo conditions is not favoured. In rat testes the 20α-hydroxysteroid dehydrogenase activity, which can convert 17α-hydroxyprogesterone to 17α,20α-dihydroxy-4-pregnen-3-one, was found to be mainly (97%) localized in the seminiferous tubules and not at the site of testosterone formation in the interstitial tissue.


2010 ◽  
Vol 46 (1) ◽  
pp. 29-36 ◽  
Author(s):  
Daiana Vianna ◽  
Gabriela Fullin Resende Teodoro ◽  
Francisco Leonardo Torres-Leal ◽  
Julio Tirapegui

In vivo and in vitro studies have demonstrated that high protein diets affect both protein synthesis and regulation of several cellular processes. The role of amino acids as substrate for protein synthesis has been established in the literature. However, the mechanism by which these amino acids modulate transcription and regulate the mRNA translation via mTOR-dependent signaling pathway has yet to be fully determined. It has been verified that mTOR is a protein responsible for activating a cascade of biochemical intracellular events which result in the activation of the protein translation process. Of the aminoacids, leucine is the most effective in stimulating protein synthesis and reducing proteolysis. Therefore, it promotes a positive nitrogen balance, possibly by favoring the activation of this protein. This amino acid also directly and indirectly stimulates the synthesis and secretion of insulin, enhancing its anabolic cellular effects. Therefore, this review aimed to identify the role of leucine in protein synthesis modulation and to discuss the metabolic aspects related to this aminoacid.


2009 ◽  
Vol 32 (6) ◽  
pp. 982-987 ◽  
Author(s):  
Paranee Meetam ◽  
Chutima Srimaroeng ◽  
Sunhapas Soodvilai ◽  
Varanuj Chatsudthipong

Sign in / Sign up

Export Citation Format

Share Document