Insulin Binding Sites Induced in the Tetrahymena by Rat Liver Receptor Antibody

1984 ◽  
Vol 39 (1-2) ◽  
pp. 183-185 ◽  
Author(s):  
G. Csaba ◽  
P. Kovács ◽  
Ágnes Inczefi-Gonda

Abstract Tetrahvmena cells treated with purified rabbit anti­ bodies to rat hepatocellular membrane exhibited a consider­ able increase in binding capacity on reexposure to the antibody 24 h later. Insulin binding was similarly enhanced by preexposure to the antibody, and vice versa, preex­ posure to insulin enhanced the later binding of rat liver receptor antibodies. This suggests that (1) the Tetrahymena and the rat possess similar insulin receptors, and (2) the receptor antibody is also able to induce imprinting for itself as well as for insulin. Concanavalin-A, noted for binding overlap with insulin, failed to induce imprinting either for insulin or for antibodies to receptors, whereas the latter did induce imprinting for Concanavalin-A.

1985 ◽  
Vol 249 (2) ◽  
pp. R203-R208
Author(s):  
R. B. Melnyk ◽  
J. M. Martin

Insulin binding to receptors in a partially purified hypothalamic membrane preparation is altered by prolonged starvation. To define further the relationship between hypothalamic insulin binding and energy balance, we studied the Richardson's ground squirrel, a hibernator that exhibits spontaneous 6- to 8-mo body weight cycles when kept in constant conditions. Isolated pancreatic islets from squirrels killed during the weight gain phase had greater glucose-stimulated insulin secretion than those from weight loss phase animals, and adipocytes showed significantly greater glucose incorporation into total lipid in response to insulin. Differences in lipogenesis were not attributable to changes in insulin-binding capacity. Hypothalamic tissue from weight gain phase animals bound more insulin than that from weight loss phase animals. Maximal binding was correlated with pancreatic islet responsiveness and maximal insulin-stimulated lipogenesis. The strong positive correlation between peripheral metabolic events associated with spontaneous alterations in energy balance and the binding kinetics of hypothalamic insulin receptors suggests that insulin may play an important role in the central regulation of body weight.


1984 ◽  
Vol 107 (1) ◽  
pp. 86-90 ◽  
Author(s):  
Roman B. Melnyk ◽  
J. M. Martin

Abstract. We have previously shown that [125I]insulin binding to medial hypothalamic receptors is attenuated following 14 days of food restriction. Such rats are characterized by considerably reduced circulating insulin levels with unchanged hypothalamic insulin concentration. The present data demonstrate that, in contrast to the effects of starvation, [125I]insulin binding to hypothalamic receptors from rats made hyperinsulinaemic by daily injections of protamine zinc insulin (4–6 U/rat/day for 14 days) is unaffected by this manipulation, even though hypothalamic insulin concentration in insulininjected animals was significantly higher than in salineinjected controls. Insulin binding to partially purified membranes from the medial hypothalamic region was significantly greater than that from the lateral area, confirming a finding in our earlier study. Insulin treatment was associated with slight reductions in maximal insulin-binding capacity of medial hypothalamic receptors, a tendency which appeared to be compensated by reciprocal changes in receptor affinity for this hormone. The data indicate that hypothalamic insulin receptors are not regulated by peripheral or even central insulin levels per se; it appears, rather, that some other, as yet unidentified, correlate(s) of significantly altered food intake and/or body weight can modify hypothalamic insulin receptor function. Perhaps such modifications could, in turn, participate in the activation of regulatory mechanisms involved in correcting energy imbalance.


1991 ◽  
Vol 100 (1) ◽  
pp. 167-171
Author(s):  
D.A. Diss ◽  
B.D. Greenstein

We describe here conditions for the detection of insulin binding sites on Xenopus laevis oocytes. The binding of 125I-labelled insulin displayed sigmoidal behaviour, which is characteristic of the binding relationship between insulin and its receptor. Resolution of the resulting curvilinear Scatchard plot into two components revealed KD values of 8.86 × 10(−10) +/− 1.9 × 10(−10) and 5.32 × 10(−9) +/− 2.4 × 10(−9) M and n values of 9.7 × 10(7) +/− 0.4 × 10(7) and 3.3 × 10(8) +/− 0.5 × 10(8) binding sites per oocyte, respectively. The possibility cannot be excluded, however, that receptors for IGF-1 were also being detected. Also described are conditions for the rapid and efficient removal of all tissues surrounding the oocyte, including the vitelline membrane. We could not detect any specific 125I-labelled insulin binding to oocytes that had their follicle cells or vitelline membrane removed and this was not due to the enzymic treatment used in the process. Microinjection of oocytes without follicular layers did not result in the appearance of any detectable insulin binding sites, which were, however, observed if oocytes were first stripped of the vitelline membrane. We suggest that oocytes may possess endogenous insulin receptors on their surface in numbers of the same order of magnitude as those present on somatic cells. The removal of tissues surrounding the oocyte should facilitate studies aimed at determining functional interactions of the various cell types during oocyte development and for studying insulin receptors on the oocyte-follicular cell complex.


PLoS ONE ◽  
2016 ◽  
Vol 11 (7) ◽  
pp. e0159704 ◽  
Author(s):  
Rachel J. Stephenson ◽  
Istvan Toth ◽  
Jiening Liang ◽  
Amanjot Mangat ◽  
Donald P. McManus ◽  
...  

1971 ◽  
Vol 125 (1) ◽  
pp. 67-79 ◽  
Author(s):  
T. K. Shires ◽  
L. Narurkar ◽  
H. C. Pitot

1. Pancreatic ribonuclease in dilute EDTA has been shown to condition rough-microsomal membranes from adult rat liver to accept exogenously added rat liver polyribosomes in vitro at 0–4°C. Treated smooth membranes would not significantly interact with polyribosomes. 2. The conditioning process decreased the membrane RNA content and removed polyribosomes from vesicle surfaces as viewed electron-microscopically. 3. Binding to these conditioned membranes was shown to be uninfluenced by changes of temperature (0–37°C) and pH (6.9–7.8) or the presence of cell sap, but was inhibited by increasing the concentration of potassium chloride. 4. Possession of a polyribosome-binding capacity by conditioned rough membranes was not dependent on adventitious materials that could be dislodged by high ionic strengths. 5. Trypsin treatment under mild conditions destroyed the binding capacity of ribonuclease-conditioned rough membranes. 6. A 2–10S residual RNA was recovered from ribonuclease-conditioned membranes, but its partial removal had no effect on the capacity of membranes to accept polyribosomes. However, some role for this residual RNA in attaching polyribosomes could not be discounted. 7. Evidence is considered that polyribosome-binding sites are intrinsic features of conditioned membranes isolated from rough-microsomal fractions, and that long-range ionic bonding is a primary factor in polyribosome interaction with these binding sites.


1991 ◽  
Vol 128 (1) ◽  
pp. 85-NP ◽  
Author(s):  
C. S. Thompson ◽  
R. M. Sykes ◽  
J. Muddle ◽  
M. R. Dashwood

ABSTRACT In-vitro autoradiography was used to demonstrate the regional distribution of 125I-labelled insulin-binding sites in the liver, kidney and heart of normal rats and rats made diabetic with streptozotocin. The distribution of insulin-binding sites in the liver of control rats was uniformly high, while in the kidney of control rats there was weak 125I-labelled insulin binding in the medulla and dense binding in the cortex. In the hearts of control rats a high density of 125I-labelled insulin-binding sites was evident both in the atrial and ventricular muscle. Non-ketotic diabetes mellitus caused a marked increase in 125I-labelled insulin-binding sites in both the liver and kidney with the former tissue exhibiting a time-dependent (7 to 62 days) increase. There was no apparent effect of diabetes on insulin-binding sites in the heart. Since experimental diabetes causes (1) a decrease in circulating insulin concentration and (2) impaired insulin action at many target tissues, the increase in 125I-labelled insulin-binding sites observed in the present study may represent a compensatory 'up regulation' of insulin receptors. Journal of Endocrinology (1991) 128, 85–89


1987 ◽  
Vol 65 (5) ◽  
pp. 803-809 ◽  
Author(s):  
Kurt Schmidt ◽  
Hans P. Baer ◽  
Azim Shariff ◽  
William A. Ayer ◽  
Lois Browne

The binding of [14,15-3H]14,15-dihydroforskolin ([3H]DHF) to rat liver membranes has been further characterized and was compared with the stimulatory effect of forskolin on adenylate cyclase. The binding equilibrium dissociation constant (KD) for 14,15-dihydroforskolin obtained in inhibition experiments was 0.6 μM, with a maximal binding capacity (Bmax) of 114 pmol/mg protein. A similar KD value (0.5 μM) was derived from kinetics studies that revealed very rapid association and dissociation reactions. For structure–activity relationship studies several forskolin derivatives were synthesized and tested for their ability to inhibit [3H]DHF binding and increase adenylate cyclase activity. Among the tested compounds, forskolin itself was the most potent agonist (KI = 0.2 μM). Further modification of the molecule in position 7 and (or) 1 decreased or abolished its agonist properties in both adenylate cyclase and binding studies. [3H]DHF binding was not affected by several nucleotides, carbohydrates, lectins, and hormone receptor agonists including isoproterenol, glucagon, and adenosine, but the steroids 17-β-estradiol, progesterone, and testosterone showed slight inhibitory effects at unphysiologically high concentrations, [3H]DHF binding and forskolin-stimulated adenylate cyclase were sensitive to heat and N-ethylmaleimide treatment. Forskolin protected adenylate cyclase against inactivation by heat but not by N-ethylmaleimide. Preincubation of the membrane with trypsin decreased [3H]DHF binding. The results presented in this study demonstrate that the binding sites identified with [3H]DHF have a high specificity for forskolin and provide evidence that these binding sites are involved in the stimulation of adenylate cyclase by forskolin.


1990 ◽  
Vol 259 (4) ◽  
pp. E517-E523 ◽  
Author(s):  
D. J. Koerker ◽  
I. R. Sweet ◽  
D. G. Baskin

Studies of insulin binding to skeletal muscle, performed using sarcolemmal membrane preparations or whole muscle incubations of mixed muscle or typical red (soleus, psoas) or white [extensor digitorum longus (EDL), gastrocnemius] muscle, have suggested that red muscle binds more insulin than white muscle. We have evaluated this hypothesis using cryostat sections of unfixed tissue to measure insulin binding in a broad range of skeletal muscles; many were of similar fiber-type profiles. Insulin binding per square millimeter of skeletal muscle slice was measured by autoradiography and computer-assisted densitometry. We found a 4.5-fold range in specific insulin tracer binding, with heart and predominantly slow-twitch oxidative muscles (SO) at the high end and the predominantly fast-twitch glycolytic (FG) muscles at the low end of the range. This pattern reflects insulin sensitivity. Evaluation of displacement curves for insulin binding yielded linear Scatchard plots. The dissociation constants varied over a ninefold range (0.26-2.06 nM). Binding capacity varied from 12.2 to 82.7 fmol/mm2. Neither binding parameter was correlated with fiber type or insulin sensitivity; e.g., among three muscles of similar fiber-type profile, the EDL had high numbers of low-affinity binding sites, whereas the quadriceps had low numbers of high-affinity sites. In summary, considerable heterogeneity in insulin binding was found among hindlimb muscles of the rat, which can be attributed to heterogeneity in binding affinities and the numbers of binding sites. It can be concluded that a given fiber type is not uniquely associated with a set of insulin binding parameters that result in high or low binding.


Sign in / Sign up

Export Citation Format

Share Document