Towards an Understanding of Plant Gene Regulation: The Action of Nuclear Factors

1991 ◽  
Vol 46 (1-2) ◽  
pp. 1-11 ◽  
Author(s):  
Kurt Weising ◽  
Günter Kahl

Abstract Over the last decade an intensive research on the regulation of gene expression in viral and animal systems has led to the discovery of cis-acting regulatory sequences, the identification of sequence-specific DNA -binding proteins (trans-acting factors), the characterization of protein domains involved in DNA -protein recognition and binding as well as in protein -protein interactions, and the cloning and sequencing of genes encoding regulatory proteins. The tre­mendous progress in this field is now being complemented by advances in our understanding of how plant genes are regulated. A wealth of data has accumulated in the past few years witnessing basic similarities in the transcriptional regulation of various eukaryotic genes, but also specific features of plant genes. This article collects presently available data, focusses on DNA -protein interactions in plant genes, particularly in light-regulated and “constitutively expressed” genes, reports on the isolation of plant genes encoding regulatory proteins, an dismeant to induce further activities in plant gene research.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Oksana Sorokina ◽  
Colin Mclean ◽  
Mike D. R. Croning ◽  
Katharina F. Heil ◽  
Emilia Wysocka ◽  
...  

AbstractGenes encoding synaptic proteins are highly associated with neuronal disorders many of which show clinical co-morbidity. We integrated 58 published synaptic proteomic datasets that describe over 8000 proteins and combined them with direct protein–protein interactions and functional metadata to build a network resource that reveals the shared and unique protein components that underpin multiple disorders. All the data are provided in a flexible and accessible format to encourage custom use.


1994 ◽  
Vol 14 (10) ◽  
pp. 6635-6646
Author(s):  
J A Diehl ◽  
M Hannink

Protein-protein interactions between the CCAAT box enhancer-binding proteins (C/EBP) and the Rel family of transcription factors have been implicated in the regulation of cytokine gene expression. We have used sequence-specific DNA affinity chromatography to purify a complex from avian T cells that binds to a consensus C/EBP motif. Our results provide evidence that Rel-related proteins are components of the C/EBP-DNA complex as a result of protein-protein interactions with the C/EBP proteins. A polyclonal antiserum raised against the Rel homology domain of v-Rel and antisera raised against two human RelA-derived peptides specifically induced a supershift of the C/EBP-DNA complex in mobility shift assays using the affinity-purified C/EBP. In addition, several kappa B-binding proteins copurified with the avian C/EBP complex through two rounds of sequence-specific DNA affinity chromatography. The kappa B-binding proteins are distinct from the C/EBP proteins that directly contact DNA containing the C/EBP binding site. The identification of a protein complex that binds specifically to a consensus C/EBP site and contains both C/EBP and Rel family members suggests a novel mechanism for regulation of gene expression by Rel family proteins.


2021 ◽  
Author(s):  
Syed N Shah

Histones H3/H4 are deposited onto DNA in a replication-dependent or independent fashion by the CAF1 and HIRA protein complexes. Despite the identification of these protein complexes, mechanistic details remain unclear. Recently, we showed that in T. thermophila histone chaperones Nrp1, Asf1 and the Impβ6 importin function together to transport newly synthesized H3/H4 from the cytoplasm to the nucleus. To characterize chromatin assembly proteins in T.thermophila, I used affinity purification combined with mass spectrometry to identify protein-protein interactions of Nrp1, Cac2 subunit of CAF1, HIRA and histone modifying Hat1-complex in T. thermophila. I found that the three-subunit T.thermophila CAF1 complex interacts with Casein Kinase 2 (CKII), possibly accounting for previously reported human CAF1phosphorylation. I also found that Hat2 subunit of HAT1 complex is also shared by CAF1 complex as its Cac3 subunit. This suggests that Hat2/Cac3 might exist in two separate pools of protein complexes. Remarkably, proteomic analysis of Hat2/Cac3 in turn revealed that it forms several complexes with other proteins including SIN3, RXT3, LIN9 and TESMIN, all of which have known roles in the regulation of gene expression. Finally, I asked how selective forces might have impacted on the function of proteins involved in H3/H4 transport. Focusing on NASP which possesses several TPR motifs, I showed that its protein-protein interactions are conserved in T. thermophila. Using molecular evolutionary methods I show that different TPRs in NASP evolve at different rates possibly accounting for the functional diversity observed among different family members.


2010 ◽  
Vol 108 (1) ◽  
pp. 343-348 ◽  
Author(s):  
Uri Gophna ◽  
Yanay Ofran

A major factor in the evolution of microbial genomes is the lateral acquisition of genes that evolved under the functional constraints of other species. Integration of foreign genes into a genome that has different components and circuits poses an evolutionary challenge. Moreover, genes belonging to complex modules in the pretransfer species are unlikely to maintain their functionality when transferred alone to new species. Thus, it is widely accepted that lateral gene transfer favors proteins with only a few protein–protein interactions. The propensity of proteins to participate in protein–protein interactions can be assessed using computational methods that identify putative interaction sites on the protein. Here we report that laterally acquired proteins contain significantly more putative interaction sites than native proteins. Thus, genes encoding proteins with multiple protein–protein interactions may in fact be more prone to transfer than genes with fewer interactions. We suggest that these proteins have a greater chance of forming new interactions in new species, thus integrating into existing modules. These results reveal basic principles for the incorporation of novel genes into existing systems.


Author(s):  
João Botelho ◽  
Paulo Mascarenhas ◽  
José João Mendes ◽  
Vanessa Machado

Recent studies supported a clinical association between Parkinson’s Disease (PD) and periodontitis. Hence, investigating possible protein interactions between these two conditions is of interest. In this study, we conducted a protein-protein network interaction analysis with recognized genes encoding proteins for PD and periodontitis. Genes of interest were collected via GWAS database. Then, we conducted a protein interaction analysis using STRING database, with a highest confidence cut-off of 0.9. Our protein network casted a comprehensive analysis of potential protein-protein interactions between PD and periodontitis. This analysis may underpin valuable information for new candidate molecular mechanisms between PD and periodontitis and may serve new potential targets for research purposes. These results should be carefully interpreted giving the limitations of this approach.


2020 ◽  
Vol 21 (6) ◽  
pp. 2009 ◽  
Author(s):  
Wenming Qiu ◽  
Juliana Soares ◽  
Zhiqian Pang ◽  
Yixiao Huang ◽  
Zhonghai Sun ◽  
...  

Huanglongbing (HLB), a bacterial disease caused by Candidatus Liberibacter asiaticus (CLas), is a major threat to the citrus industry. In a previous study conducted by our laboratory, several citrus transgenic trees expressing the Arabidopsis thaliana NPR1 (AtNPR1) gene remained HLB-free when grown in a field site under high HLB disease pressure. To determine the molecular mechanisms behind AtNPR1-mediated tolerance to HLB, a transcriptome analysis was performed using AtNPR1 overexpressing transgenic trees and non-transgenic trees as control, from which we identified 57 differentially expressed genes (DEGs). Data mining revealed the enhanced transcription of genes encoding pathogen-associated molecular patterns (PAMPs), transcription factors, leucine-rich repeat receptor kinases (LRR-RKs), and putative ankyrin repeat-containing proteins. These proteins were highly upregulated in the AtNPR1 transgenic line compared to the control plant. Furthermore, analysis of protein–protein interactions indicated that AtNPR1 interacts with CsNPR3 and CsTGA5 in the nucleus. Our results suggest that AtNPR1 positively regulates the innate defense mechanisms in citrus thereby boosting resistance and effectively protecting the plant against HLB.


Parasitology ◽  
2013 ◽  
Vol 140 (9) ◽  
pp. 1085-1095 ◽  
Author(s):  
ELIZÂNGELA A. ROCHA ◽  
ANALINA F. VALADÃO ◽  
CÍNTIA M. REZENDE ◽  
SILVIA REGINA COSTA DIAS ◽  
ANDRÉA M. MACEDO ◽  
...  

SUMMARYSMYB1 is a Schistosoma mansoni protein highly similar to members of the Y-box binding protein family. Similar to other homologues, SMYB1 is able to bind double- and single-stranded DNA, as well as RNA molecules. The characterization of proteins involved in the regulation of gene expression in S. mansoni is of great importance for the understanding of molecular events that control morphological and physiological changes in this parasite. Here we demonstrate that SMYB1 is located in the cytoplasm of cells from different life-cycle stages of S. mansoni, suggesting that this protein is probably acting in mRNA metabolism in the cytoplasm and corroborating previous findings from our group that showed its ability to bind RNA. Protein–protein interactions are important events in all biological processes, since most proteins execute their functions through large supramolecular structures. Yeast two-hybrid screenings using SMYB1 as bait identified a partner in S. mansoni similar to the SmD3 protein of Drosophila melanogaster (SmRNP), which is important in the assembly of small nuclear ribonucleoprotein complexes. Also, pull-down assays were conducted using immobilized GST-SMYB1 proteins and confirmed the SMYB1-SmRNP interaction. The interaction of SMYB1 with a protein involved in mRNA processing suggests that it may act in processes such as turnover, transport and stabilization of RNA molecules.


Microbiology ◽  
2004 ◽  
Vol 150 (4) ◽  
pp. 1031-1040 ◽  
Author(s):  
Colleen Thomas ◽  
Carol R. Andersson ◽  
Shannon R. Canales ◽  
Susan S. Golden

In this paper a gene (psfR) is reported that regulates psbAI activity in Synechococcus elongatus, a unicellular photoautotrophic cyanobacterium that carries out oxygenic (plant-type) photosynthesis and exhibits global circadian regulation of gene expression. In S. elongatus, a family of three psbA genes encodes the D1 protein of the photosystem II reaction centre. Overexpression of psfR results in increased expression of psbAI, but does not affect the circadian timing of psbAI expression. psfR overexpression affected some, but not all of the genes routinely surveyed for circadian expression. PsfR acts (directly or indirectly) on the psbAI basal promoter region. psfR knockout mutants exhibit wild-type psbAI expression, suggesting that other factors can regulate psbAI expression in the absence of functional PsfR. PsfR contains two receiver-like domains (found in bacterial two-component signal transduction systems), one of which lacks the conserved aspartyl residue required for phosphoryl transfer. PsfR also contains a GGDEF domain. The presence of these domains and the absence of a detectable conserved DNA-binding domain suggest that PsfR may regulate psbAI expression via protein–protein interactions or GGDEF activity (the production of cyclic dinucleotides) rather than direct interaction with the psbAI promoter.


1994 ◽  
Vol 107 (8) ◽  
pp. 2055-2063 ◽  
Author(s):  
A.P. Wolffe

Differential expression of the oocyte and somatic 5 S RNA genes during Xenopus development can be explained by changes in transcription factor and histone interactions with the two types of gene. Both factors and histones bind 5 S RNA genes with specificity. Protein-protein interactions determine the stability of potentially transcriptionally active or repressed nucleoprotein complexes. A decline in transcription factor abundance, differential binding of transcription factors to oocyte and somatic 5 S genes, and increased competition with the histones for association with DNA during early embryogenesis, can account for the developmental decision to selectively repress the oocyte genes, while retaining the somatic genes in the transcriptionally active state. The 5 S ribosomal genes of Xenopus are perhaps the simplest eukaryotic genes to show regulated expression during development. A large multigene family (oocyte 5 S DNA) is transcriptionally active in oocytes but is repressed in somatic cells, whereas a small multigene family (somatic 5 S DNA) is active in both cell types. A potential molecular mechanism to explain the developmental switch that turns off oocyte 5 S DNA transcription has been experimentally reconstructed in vitro and more recently tested in vivo. Central to this mechanism is the specific association of both transcription factors and histones with 5 S RNA genes. How the interplay of histones and transcription factors is thought to affect transcription, and how their respective contributions might change during development from an oocyte, to an embryo and eventually to a somatic cell is the focus of this review.


Sign in / Sign up

Export Citation Format

Share Document