Protein-Protein Interactions in the Regulation of Plant Gene Transcription

2018 ◽  
pp. 269-298
Author(s):  
Dao-Xiu Zhou
2002 ◽  
Vol 184 (8) ◽  
pp. 2251-2259 ◽  
Author(s):  
Dietmar E. Martin ◽  
Barbara Reinhold-Hurek

ABSTRACT PII-like signal transmitter proteins, found in Bacteria, Archaea, and plants, are known to mediate control of carbon and nitrogen assimilation. They indirectly regulate the activity of key metabolic enzymes and transcription factors by protein-protein interactions with signal transduction proteins. Many Proteobacteria harbor two paralogous PII-like proteins, GlnB and GlnK, whereas a novel third PII paralogue (GlnY) was recently identified in Azoarcus sp. strain BH72, a diazotrophic endophyte of grasses. In the present study, evidence was obtained that the PII-like proteins have distinct roles in mediating nitrogen and oxygen control of nif gene transcription and nitrogenase activity. Full repression of nif gene transcription in the presence of a combined nitrogen source or high oxygen concentrations was observed in wild-type and glnB and glnK knockout mutants, revealing that GlnB and GlnK can complement each other in mediating the repression. In contrast, in a glnBK double mutant strain in the presence of only GlnY, nif gene transcription was still detectable, albeit at a lower level, on nitrate or 20% oxygen. As another level of control, nitrogenase activity was regulated by at least three types of mechanisms in strain BH72: covalent modification of dinitrogenase reductase (NifH), probably by ADP-ribosylation, and two other, unknown means. Functional inactivation upon ammonium addition (switch-off) required the putative high-affinity ammonium transporter AmtB and GlnK, but not GlnB or GlnY. Functional inactivation in response to anaerobiosis did not depend on AmtB, GlnK, or GlnB. In contrast, covalent modification of NifH required both GlnB and GlnK and AmtB as response to ammonium addition, whereas it required either GlnB or GlnK and not AmtB when cells were shifted to anaerobiosis. In a glnBK double mutant expressing only GlnY, NifH modification was completely abolished, further revealing functional differences between the three PII paralogues.


Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6125
Author(s):  
Gerald Thiel ◽  
Tobias M. Backes ◽  
Lisbeth A. Guethlein ◽  
Oliver G. Rössler

Elk-1 is a transcription factor that binds together with a dimer of the serum response factor (SRF) to the serum-response element (SRE), a genetic element that connects cellular stimulation with gene transcription. Elk-1 plays an important role in the regulation of cellular proliferation and apoptosis, thymocyte development, glucose homeostasis and brain function. The biological function of Elk-1 relies essentially on the interaction with other proteins. Elk-1 binds to SRF and generates a functional ternary complex that is required to activate SRE-mediated gene transcription. Elk-1 is kept in an inactive state under basal conditions via binding of a SUMO-histone deacetylase complex. Phosphorylation by extracellular signal-regulated protein kinase, c-Jun N-terminal protein kinase or p38 upregulates the transcriptional activity of Elk-1, mediated by binding to the mediator of RNA polymerase II transcription (Mediator) and the transcriptional coactivator p300. Strong and extended phosphorylation of Elk-1 attenuates Mediator and p300 recruitment and allows the binding of the mSin3A-histone deacetylase corepressor complex. The subsequent dephosphorylation of Elk-1, catalyzed by the protein phosphatase calcineurin, facilitates the re-SUMOylation of Elk-1, transforming Elk-1 back to a transcriptionally inactive state. Thus, numerous protein–protein interactions control the activation cycle of Elk-1 and are essential for its biological function.


1991 ◽  
Vol 46 (1-2) ◽  
pp. 1-11 ◽  
Author(s):  
Kurt Weising ◽  
Günter Kahl

Abstract Over the last decade an intensive research on the regulation of gene expression in viral and animal systems has led to the discovery of cis-acting regulatory sequences, the identification of sequence-specific DNA -binding proteins (trans-acting factors), the characterization of protein domains involved in DNA -protein recognition and binding as well as in protein -protein interactions, and the cloning and sequencing of genes encoding regulatory proteins. The tre­mendous progress in this field is now being complemented by advances in our understanding of how plant genes are regulated. A wealth of data has accumulated in the past few years witnessing basic similarities in the transcriptional regulation of various eukaryotic genes, but also specific features of plant genes. This article collects presently available data, focusses on DNA -protein interactions in plant genes, particularly in light-regulated and “constitutively expressed” genes, reports on the isolation of plant genes encoding regulatory proteins, an dismeant to induce further activities in plant gene research.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ka Lung Cheung ◽  
Claudia Kim ◽  
Ming-Ming Zhou

The BET (bromodomain and extra-terminal domain) family proteins, consisting of BRD2, BRD3, BRD4, and testis-specific BRDT, are widely acknowledged as major transcriptional regulators in biology. They are characterized by two tandem bromodomains (BDs) that bind to lysine-acetylated histones and transcription factors, recruit transcription factors and coactivators to target gene sites, and activate RNA polymerase II machinery for transcriptional elongation. Pharmacological inhibition of BET proteins with BD inhibitors has been shown as a promising therapeutic strategy for the treatment of many human diseases including cancer and inflammatory disorders. The recent advances in bromodomain protein biology have further uncovered the complex and versatile functions of BET proteins in the regulation of gene expression in chromatin. In this review article, we highlight our current understanding of BET proteins’ functions in mediating protein–protein interactions required for chromatin-templated gene transcription and splicing, chromatin remodeling, DNA replication, and DNA damage repair. We further discuss context-dependent activator vs. repressor functions of individual BET proteins, isoforms, and bromodomains that may be harnessed for future development of BET bromodomain inhibitors as emerging epigenetic therapies for cancer and inflammatory disorders.


2009 ◽  
Vol 30 (3) ◽  
pp. 745-763 ◽  
Author(s):  
Zhuojuan Luo ◽  
Andrea Wijeweera ◽  
Yingzi Oh ◽  
Yih-Cherng Liou ◽  
Philippa Melamed

ABSTRACT Pin1 is a peptidyl-prolyl cis-trans isomerase which catalyzes the isomerization of phosphorylated Ser/Thr-Pro peptide bonds. Pin1 knockout mice have marked abnormalities in their reproductive development and function. However, the molecular mechanisms underlying their reproductive defects are poorly understood. Herein, we demonstrate that Pin1 is required for both basal and GnRH-induced gonadotropin β-subunit gene transcription, through interactions with the transcription factors SF-1, Pitx1, and Egr-1. Pin1 activates transcription of the gonadotropin β-subunit genes synergistically with these transcription factors, either by modulating their stability or by increasing their protein-protein interactions. Notably, we provide evidence that Pin1 is required for the Ser203 phosphorylation-dependent ubiquitination of SF-1, which facilitates SF-1-Pitx1 interactions and therefore results in an enhancement of SF-1 transcriptional activity. Furthermore, we demonstrate that in gonadotrope cells, sufficient levels of activated Pin1 are maintained through transcriptional and posttranslational regulation by GnRH-induced signaling cascades. Our results suggest that Pin1 functions as a novel player in GnRH-induced signal pathways and is involved in gonadotropin β-subunit gene transcription by modulating the activity of various specific transcription factors.


2011 ◽  
Vol 49 (08) ◽  
Author(s):  
LC König ◽  
M Meinhard ◽  
C Sandig ◽  
MH Bender ◽  
A Lovas ◽  
...  

1974 ◽  
Vol 31 (03) ◽  
pp. 403-414 ◽  
Author(s):  
Terence Cartwright

SummaryA method is described for the extraction with buffers of near physiological pH of a plasminogen activator from porcine salivary glands. Substantial purification of the activator was achieved although this was to some extent complicated by concomitant extraction of nucleic acid from the glands. Preliminary characterization experiments using specific inhibitors suggested that the activator functioned by a similar mechanism to that proposed for urokinase, but with some important kinetic differences in two-stage assay systems. The lack of reactivity of the pig gland enzyme in these systems might be related to the tendency to protein-protein interactions observed with this material.


Sign in / Sign up

Export Citation Format

Share Document