Non-Linear Mechanisms in the Brain

1998 ◽  
Vol 53 (7-8) ◽  
pp. 677-685 ◽  
Author(s):  
Gottfried Mayer-Kress

Abstract Non-linear dynamical models of brain activity can describe the spontaneous emergence of large-scale coherent structures both in a temporal and spatial domain. We discuss a number of discrete time dynamical neuron models that illustrate some of the mechanisms involved. Of special interest is the phenomenon of spatio-temporal stochastic resonance in which co­herent structures emerge as a result of the interaction of the neuronal system with external noise at a given level punitive data. We then discuss the general role of stochastic noise in brain dynamics and how similar concepts can be studied in the context of networks of con­nected brains on the Internet.

Author(s):  
Hans Liljenström

AbstractWhat is the role of consciousness in volition and decision-making? Are our actions fully determined by brain activity preceding our decisions to act, or can consciousness instead affect the brain activity leading to action? This has been much debated in philosophy, but also in science since the famous experiments by Libet in the 1980s, where the current most common interpretation is that conscious free will is an illusion. It seems that the brain knows, up to several seconds in advance what “you” decide to do. These studies have, however, been criticized, and alternative interpretations of the experiments can be given, some of which are discussed in this paper. In an attempt to elucidate the processes involved in decision-making (DM), as an essential part of volition, we have developed a computational model of relevant brain structures and their neurodynamics. While DM is a complex process, we have particularly focused on the amygdala and orbitofrontal cortex (OFC) for its emotional, and the lateral prefrontal cortex (LPFC) for its cognitive aspects. In this paper, we present a stochastic population model representing the neural information processing of DM. Simulation results seem to confirm the notion that if decisions have to be made fast, emotional processes and aspects dominate, while rational processes are more time consuming and may result in a delayed decision. Finally, some limitations of current science and computational modeling will be discussed, hinting at a future development of science, where consciousness and free will may add to chance and necessity as explanation for what happens in the world.


Author(s):  
Javier Escudero ◽  
Roberto Hornero ◽  
Daniel Abásolo ◽  
Jesús Poza ◽  
Alberto Fernández

The analysis of the electromagnetic brain activity can provide important information to help in the diagnosis of several mental diseases. Both electroencephalogram (EEG) and magnetoencephalogram (MEG) record the neural activity with high temporal resolution (Hämäläinen, Hari, Ilmoniemi, Knuutila, & Lounasmaa, 1993). Nevertheless, MEG offers some advantages over EEG. For example, in contrast to EEG, MEG does not depend on any reference point. Moreover, the magnetic fields are less distorted than the electric ones by the skull and the scalp (Hämäläinen et al., 1993). Despite these advantages, the use of MEG data involves some problems. One of the most important difficulties is that MEG recordings may be severely contaminated by additive external noise due to the intrinsic weakness of the brain magnetic fields. Hence, MEG must be recorded in magnetically shielded rooms with low-noise SQUID (Superconducting QUantum Interference Devices) gradiometers (Hämäläinen et al., 1993).


2021 ◽  
pp. 102-106
Author(s):  
Claudia Menzel ◽  
Gyula Kovács ◽  
Gregor U. Hayn-Leichsenring ◽  
Christoph Redies

Most artists who create abstract paintings place the pictorial elements not at random, but arrange them intentionally in a specific artistic composition. This arrangement results in a pattern of image properties that differs from image versions in which the same pictorial elements are randomly shuffled. In the article under discussion, the original abstract paintings of the author’s image set were rated as more ordered and harmonious but less interesting than their shuffled counterparts. The authors tested whether the human brain distinguishes between these original and shuffled images by recording electrical brain activity in a particular paradigm that evokes a so-called visual mismatch negativity. The results revealed that the brain detects the differences between the two types of images fast and automatically. These findings are in line with models that postulate a significant role of early (low-level) perceptual processing of formal image properties in aesthetic evaluations.


2005 ◽  
Vol 05 (02) ◽  
pp. L337-L342 ◽  
Author(s):  
D. VALENTI ◽  
A. FIASCONARO ◽  
B. SPAGNOLO

We study the spatial distributions of two randomly interacting species, in the presence of an external multiplicative colored noise. The dynamics of the ecosystem is described by a coupled map lattice model. We find a nonmonotonic behavior in the formation of large scale spatial correlations as a function of the multiplicative colored noise intensity. This behavior is shifted towards higher values of the noise intensity for increasing correlation time of the noise.


2021 ◽  
Vol 18 (181) ◽  
pp. 20210523
Author(s):  
Nathaniel J. Linden ◽  
Dennis R. Tabuena ◽  
Nicholas A. Steinmetz ◽  
William J. Moody ◽  
Steven L. Brunton ◽  
...  

Widefield calcium imaging has recently emerged as a powerful experimental technique to record coordinated large-scale brain activity. These measurements present a unique opportunity to characterize spatiotemporally coherent structures that underlie neural activity across many regions of the brain. In this work, we leverage analytic techniques from fluid dynamics to develop a visualization framework that highlights features of flow across the cortex, mapping wavefronts that may be correlated with behavioural events. First, we transform the time series of widefield calcium images into time-varying vector fields using optic flow. Next, we extract concise diagrams summarizing the dynamics, which we refer to as FLOW (flow lines in optical widefield imaging) portraits . These FLOW portraits provide an intuitive map of dynamic calcium activity, including regions of initiation and termination, as well as the direction and extent of activity spread. To extract these structures, we use the finite-time Lyapunov exponent technique developed to analyse time-varying manifolds in unsteady fluids. Importantly, our approach captures coherent structures that are poorly represented by traditional modal decomposition techniques. We demonstrate the application of FLOW portraits on three simple synthetic datasets and two widefield calcium imaging datasets, including cortical waves in the developing mouse and spontaneous cortical activity in an adult mouse.


2021 ◽  
Vol 15 ◽  
Author(s):  
Wei Tang ◽  
Meimei Zhang ◽  
Guofang Chen ◽  
Rui Liu ◽  
Yuxing Peng ◽  
...  

The triangular ridged surface can improve the grip reliability of products, but the sharp edge of triangular ridge induces sharp and uncomfortable feeling. To study the effect of edge shape (sharp, round, and flat shape) of triangular ridges on brain activity during touching, electroencephalograph (EEG) signals during tactile perception were evaluated using event-related potentials (ERP) and non-linear analysis methods. The results showed that the early component of P100 and P200, and the late component of P300 were successfully induced during perceiving the ridged texture. The edge shape features affect the electrical activity of brain during the tactile perceptions. The sharp shape feature evoked fast P100 latency and high P100 amplitude. The flat texture with complex (sharp and flat) shape feature evoked fast P200 latency, high P200 amplitude and RQA parameters. Both of the sharp shape and complex shape feature tended to evoke high peak amplitude of P300. The large-scale structures of recurrence plots (RPs) and recurrence quantification analysis (RQA) parameters can visually and quantitatively characterize the evolution regulation of the dynamic behavior of EEG system along with the tactile process. This study proved that RPs and RQA were protential methods for the feature extraction and state recognition of EEG during tactile perception of textured surface. This research contributes to optimize surface tactile characteristics on products, especially effective surface textures design for good grip.


2020 ◽  
Author(s):  
Paul Triebkorn ◽  
Joelle Zimmermann ◽  
Leon Stefanovski ◽  
Dipanjan Roy ◽  
Ana Solodkin ◽  
...  

AbstractUsing The Virtual Brain (TVB, thevirtualbrian.org) simulation platform, we explored for 50 individual adult human brains (ages 18-80), how personalized connectome based brain network modelling captures various empirical observations as measured by functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). We compare simulated activity based on individual structural connectomes (SC) inferred from diffusion weighted imaging with fMRI and EEG in the resting state. We systematically explore the role of the following model parameters: conduction velocity, global coupling and graph theoretical features of individual SC. First, a subspace of the parameter space is identified for each subject that results in realistic brain activity, i.e. reproducing the following prominent features of empirical EEG-fMRI activity: topology of resting-state fMRI functional connectivity (FC), functional connectivity dynamics (FCD), electrophysiological oscillations in the delta (3-4 Hz) and alpha (8-12 Hz) frequency range and their bimodality, i.e. low and high energy modes. Interestingly, FCD fit, bimodality and static FC fit are highly correlated. They all show their optimum in the same range of global coupling. In other words, only when our local model is in a bistable regime we are able to generate switching of modes in our global network. Second, our simulations reveal the explicit network mechanisms that lead to electrophysiological oscillations, their bimodal behaviour and inter-regional differences. Third, we discuss biological interpretability of the Stefanescu-Jirsa-Hindmarsh-Rose-3D model when embedded inside the large-scale brain network and mechanisms underlying the emergence of bimodality of the neural signal.With the present study, we set the cornerstone for a systematic catalogue of spatiotemporal brain activity regimes generated with the connectome-based brain simulation platform The Virtual Brain.Author SummaryIn order to understand brain dynamics we use numerical simulations of brain network models. Combining the structural backbone of the brain, that is the white matter fibres connecting distinct regions in the grey matter, with dynamical systems describing the activity of neural populations we are able to simulate brain function on a large scale. In order to make accurate prediction with this network, it is crucial to determine optimal model parameters. We here use an explorative approach to adjust model parameters to individual brain activity, showing that subjects have their own optimal point in the parameter space, depending on their brain structure and function. At the same time, we investigate the relation between bistable phenomena on the scale of neural populations and the changed in functional connectivity on the brain network scale. Our results are important for future modelling approaches trying to make accurate predictions of brain function.


2021 ◽  
Vol 376 (1820) ◽  
pp. 20190757 ◽  
Author(s):  
Aurèle Boussard ◽  
Adrian Fessel ◽  
Christina Oettmeier ◽  
Léa Briard ◽  
Hans-Günther Döbereiner ◽  
...  

The slime mould Physarum polycephalum , an aneural organism, uses information from previous experiences to adjust its behaviour, but the mechanisms by which this is accomplished remain unknown. This article examines the possible role of oscillations in learning and memory in slime moulds. Slime moulds share surprising similarities with the network of synaptic connections in animal brains. First, their topology derives from a network of interconnected, vein-like tubes in which signalling molecules are transported. Second, network motility, which generates slime mould behaviour, is driven by distinct oscillations that organize into spatio-temporal wave patterns. Likewise, neural activity in the brain is organized in a variety of oscillations characterized by different frequencies. Interestingly, the oscillating networks of slime moulds are not precursors of nervous systems but, rather, an alternative architecture. Here, we argue that comparable information-processing operations can be realized on different architectures sharing similar oscillatory properties. After describing learning abilities and oscillatory activities of P. polycephalum , we explore the relation between network oscillations and learning, and evaluate the organism's global architecture with respect to information-processing potential. We hypothesize that, as in the brain, modulation of spontaneous oscillations may sustain learning in slime mould. This article is part of the theme issue ‘Basal cognition: conceptual tools and the view from the single cell’.


2021 ◽  
Author(s):  
Keiichi Onoda

Finding the neural basis of consciousness is a challenging issue, and it is still inconclusive where the core of consciousness is distributed in the brain. The global neuronal workspace theory (GNWT) emphasizes the role of the frontoparietal regions, whereas the integrated information theory (IIT) argues that the posterior part of the brain is the core of consciousness. IIT has proposed “main complex” as the core of consciousness in a dynamic system, which is a set of elements that the information loss in a hierarchical partition approach is the largest among that of all its supersets and subsets. However, no experimental study has reported the core of consciousness using the main complex for actual brain activity. This study estimated the main complex of brain dynamics using a functional MRI. The whole-brain fMRI data of eight conditions (seven tasks and a rest state) were divided into multiple elements based on network atlases, and the main complex of the dynamic system was estimated for each condition. It is assumed that, if there is a set of elements in the complex that are common to all conditions, the set is likely to contain the core of consciousness. Executive control, salience, and dorsal/ventral attention networks were commonly included in the main complex across all conditions, implying that these networks are responsible for the core of consciousness. This finding is consistent with the GNWT, as these networks are across the prefrontal and parietal regions.


Sign in / Sign up

Export Citation Format

Share Document