scholarly journals Identifying optimal working points of individual Virtual Brains: A large-scale brain network modelling study

2020 ◽  
Author(s):  
Paul Triebkorn ◽  
Joelle Zimmermann ◽  
Leon Stefanovski ◽  
Dipanjan Roy ◽  
Ana Solodkin ◽  
...  

AbstractUsing The Virtual Brain (TVB, thevirtualbrian.org) simulation platform, we explored for 50 individual adult human brains (ages 18-80), how personalized connectome based brain network modelling captures various empirical observations as measured by functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). We compare simulated activity based on individual structural connectomes (SC) inferred from diffusion weighted imaging with fMRI and EEG in the resting state. We systematically explore the role of the following model parameters: conduction velocity, global coupling and graph theoretical features of individual SC. First, a subspace of the parameter space is identified for each subject that results in realistic brain activity, i.e. reproducing the following prominent features of empirical EEG-fMRI activity: topology of resting-state fMRI functional connectivity (FC), functional connectivity dynamics (FCD), electrophysiological oscillations in the delta (3-4 Hz) and alpha (8-12 Hz) frequency range and their bimodality, i.e. low and high energy modes. Interestingly, FCD fit, bimodality and static FC fit are highly correlated. They all show their optimum in the same range of global coupling. In other words, only when our local model is in a bistable regime we are able to generate switching of modes in our global network. Second, our simulations reveal the explicit network mechanisms that lead to electrophysiological oscillations, their bimodal behaviour and inter-regional differences. Third, we discuss biological interpretability of the Stefanescu-Jirsa-Hindmarsh-Rose-3D model when embedded inside the large-scale brain network and mechanisms underlying the emergence of bimodality of the neural signal.With the present study, we set the cornerstone for a systematic catalogue of spatiotemporal brain activity regimes generated with the connectome-based brain simulation platform The Virtual Brain.Author SummaryIn order to understand brain dynamics we use numerical simulations of brain network models. Combining the structural backbone of the brain, that is the white matter fibres connecting distinct regions in the grey matter, with dynamical systems describing the activity of neural populations we are able to simulate brain function on a large scale. In order to make accurate prediction with this network, it is crucial to determine optimal model parameters. We here use an explorative approach to adjust model parameters to individual brain activity, showing that subjects have their own optimal point in the parameter space, depending on their brain structure and function. At the same time, we investigate the relation between bistable phenomena on the scale of neural populations and the changed in functional connectivity on the brain network scale. Our results are important for future modelling approaches trying to make accurate predictions of brain function.

2020 ◽  
Author(s):  
Rosaria Rucco ◽  
Anna Lardone ◽  
marianna Liparoti ◽  
Emahnuel Troisi Lopez ◽  
Rosa De Micco ◽  
...  

Aim The aim of the present study is to investigate the relations between both functional connectivity and brain networks with cognitive decline, in patients with Parkinson′s disease (PD). Introduction PD phenotype is not limited to motor impairment but, rather, a wide range of non-motor disturbances can occur, cognitive impairment being one of the commonest. However, how the large-scale organization of brain activity differs in cognitively impaired patients, as opposed to cognitively preserved ones, remains poorly understood. Methods Starting from source-reconstructed resting-state magnetoencephalography data, we applied the PLM to estimate functional connectivity, globally and between brain areas, in PD patients with and without cognitive impairment (respectively PD-CI and PD-NC), as compared to healthy subjects (HS). Furthermore, using graph analysis, we characterized the alterations in brain network topology and related these, as well as the functional connectivity, to cognitive performance. Results We found reduced global and nodal PLM in several temporal (fusiform gyrus, Heschl′s gyrus and inferior temporal gyrus), parietal (postcentral gyrus), and occipital (lingual gyrus) areas within the left hemisphere, in the gamma band, in PD-CI patients, as compared to PD-NC and HS. With regard to the global topological features, PD-CI patients, as compared to HS and PD-NC patients, showed differences in multi frequencies bands (delta, alpha, gamma) in the Leaf fraction, Tree hierarchy (both higher in PD-CI) and Diameter (lower in PD-CI). Finally, we found statistically significant correlations between the MoCA test and both the Diameter in delta band and the Tree Hierarchy in the alpha band. Conclusion Our work points to specific large-scale rearrangements that occur selectively in cognitively compromised PD patients and correlated to cognitive impairment.


2019 ◽  
Author(s):  
MinKyung Kim ◽  
UnCheol Lee

AbstractBrain networks during unconscious states resulting from sleep, anesthesia, or traumatic injuries are associated with a limited capacity for complex responses to stimulation. Even during the conscious resting state, responsiveness to stimulus is highly dependent on spontaneous brain activities. Many empirical findings have been suggested that the brain responsiveness is determined mainly by the ongoing brain activity when a stimulus is given. However, there has been no systematic study exploring how such various brain activities with high or low synchronization, amplitude, and phase response to stimuli. In this model study, we simulated large-scale brain network dynamics in three brain states (below, near, and above the critical state) and investigated a relationship between ongoing oscillation properties and a stimulus decomposing the brain activity into fundamental oscillation properties (instantaneous global synchronization, amplitude, and phase). We identified specific stimulation conditions that produce varying levels of brain responsiveness. When a single pulsatile stimulus was applied to globally desynchronized low amplitude of oscillation, the network generated a large response. By contrast, when a stimulus was applied to specific phases of oscillation that were globally synchronized with high amplitude activity, the response was inhibited. This study proposes the oscillatory conditions to induce specific stimulation outcomes in the brain that can be systematically derived from networked oscillator properties, and reveals the presence of state-dependent temporal windows for optimal brain stimulation. The identified relationship will help advance understanding of the small/large responsiveness of the brain in different states of consciousness and suggest state-dependent methods to modulate responsiveness.Author SummaryA responsiveness of the brain network to external stimulus is different across brain states such as wakefulness, sleep, anesthesia, and traumatic injuries. It has been shown that responsiveness of the brain during conscious state also varies due to the diverse transient states of the brain characterized by different global and local oscillation properties. In this computational model study using large-scale brain network, we hypothesized that the brain responsiveness is determined by the interactions of networked oscillators when a stimulus is applied to the brain. We examined relationships between responsiveness of the brain network, global synchronization levels, and instantaneous oscillation properties such as amplitude and phase in different brain states. We found specific stimulation conditions of the brain that produce large or small levels of responsiveness. The identified relationship suggests the existence of temporal windows that periodically inhibit sensory information processing during conscious state and develops state-dependent methods to modulate brain responsiveness considering dynamically changed functional brain network.


2017 ◽  
Author(s):  
Giri P. Krishnan ◽  
Oscar C. González ◽  
Maxim Bazhenov

AbstractResting or baseline state low frequency (0.01-0.2 Hz) brain activity has been observed in fMRI, EEG and LFP recordings. These fluctuations were found to be correlated across brain regions, and are thought to reflect neuronal activity fluctuations between functionally connected areas of the brain. However, the origin of these infra-slow fluctuations remains unknown. Here, using a detailed computational model of the brain network, we show that spontaneous infra-slow (< 0.05 Hz) fluctuations could originate due to the ion concentration dynamics. The computational model implemented dynamics for intra and extracellular K+ and Na+ and intracellular Cl- ions, Na+/K+ exchange pump, and KCC2 co-transporter. In the network model representing resting awake-like brain state, we observed slow fluctuations in the extracellular K+ concentration, Na+/K+ pump activation, firing rate of neurons and local field potentials. Holding K+ concentration constant prevented generation of these fluctuations. The amplitude and peak frequency of this activity were modulated by Na+/K+ pump, AMPA/GABA synaptic currents and glial properties. Further, in a large-scale network with long-range connections based on CoCoMac connectivity data, the infra-slow fluctuations became synchronized among remote clusters similar to the resting-state networks observed in vivo. Overall, our study proposes that ion concentration dynamics mediated by neuronal and glial activity may contribute to the generation of very slow spontaneous fluctuations of brain activity that are observed as the resting-state fluctuations in fMRI and EEG recordings.


2017 ◽  
Vol 14 (130) ◽  
pp. 20160994 ◽  
Author(s):  
P. A. Robinson

Transfers of large-scale neural activity into, within and between corticothalamic neural populations and brain hemispheres are analysed using time-integrated transfer functions and state parameters obtained from neural field theory for a variety of arousal states. It is shown that the great majority of activity results from feedbacks within the corticothalamic system, including significant transfer between hemispheres, but only a small minority arises via net input from the external world, with the brain thus in a near-critical, highly introspective state. Notably, the total excitatory and inhibitory influences on cortical neurons are balanced to within a few per cent across arousal states. Strong negative intrahemispheric feedforward exists to the cortex, and even larger interhemispheric positive feedforward, but these are modified by feedback loops to yield near-critical positive overall gain. The results underline the utility of transfer functions for the analysis of brain activity.


2020 ◽  
Author(s):  
Juan Piccinini ◽  
Ignacio Perez Ipina ◽  
Helmut Laufs ◽  
Morten Kringelbach ◽  
Gustavo Deco ◽  
...  

An outstanding open problem in neuroscience is to understand how neural systems are capable of producing and sustaining complex spatiotemporal dynamics. Computational models that combine local dynamics with in vivo measurements of anatomical and functional connectivity can be used to test potential mechanisms underlying this complexity. We compared two conceptually different mechanisms: noise-driven switching between equilibrium solutions (modeled by coupled Stuart-Landau oscillators) and deterministic chaos (modeled by coupled Rossler oscillators). We found that both models struggled to simultaneously reproduce multiple observables computed from the empirical data. This issue was especially manifest in the case of noise-driven dynamics close to a bifurcation, which imposed overly strong constraints on the optimal model parameters. In contrast, the chaotic model could produce complex behavior over an ampler range of parameters, thus being capable of capturing multiple observables at the same time with good performance. Our observations support the view of the brain as a non-equilibrium system able to produce endogenous variability. We presented a simple model capable of jointly reproducing functional connectivity computed at different temporal scales. Besides adding to our conceptual understanding of brain complexity, our results inform and constraint the future development of biophysically realistic large-scale models.The quote “What I cannot create, I do not understand” was found written in the blackboard of celebrated physicist Richard Feynman at the time of his death. This sentence suggests a way forward for neuroscientists interested in unravelling the principles behind the richness and complexity of spontaneous brain dynamics. Over the last decades, tremendous advances in neuroimaging enabled the construction of whole-brain activity models with real predictive power in the statistical sense. It is now possible to create realistic complex dynamics, instead of passively screening for their presence in neuroimaging data. We contrasted two different types of building blocks (i.e. two choices of local dynamics) and tested their capacity to reproduce the empirical data, with the purpose of increasing our conceptual understanding of the mechanisms behind large-scale spontaneous activity in the human brain.


Author(s):  
Stefano Vassanelli

Establishing direct communication with the brain through physical interfaces is a fundamental strategy to investigate brain function. Starting with the patch-clamp technique in the seventies, neuroscience has moved from detailed characterization of ionic channels to the analysis of single neurons and, more recently, microcircuits in brain neuronal networks. Development of new biohybrid probes with electrodes for recording and stimulating neurons in the living animal is a natural consequence of this trend. The recent introduction of optogenetic stimulation and advanced high-resolution large-scale electrical recording approaches demonstrates this need. Brain implants for real-time neurophysiology are also opening new avenues for neuroprosthetics to restore brain function after injury or in neurological disorders. This chapter provides an overview on existing and emergent neurophysiology technologies with particular focus on those intended to interface neuronal microcircuits in vivo. Chemical, electrical, and optogenetic-based interfaces are presented, with an analysis of advantages and disadvantages of the different technical approaches.


2020 ◽  
Vol 31 (6) ◽  
pp. 681-689
Author(s):  
Jalal Mirakhorli ◽  
Hamidreza Amindavar ◽  
Mojgan Mirakhorli

AbstractFunctional magnetic resonance imaging a neuroimaging technique which is used in brain disorders and dysfunction studies, has been improved in recent years by mapping the topology of the brain connections, named connectopic mapping. Based on the fact that healthy and unhealthy brain regions and functions differ slightly, studying the complex topology of the functional and structural networks in the human brain is too complicated considering the growth of evaluation measures. One of the applications of irregular graph deep learning is to analyze the human cognitive functions related to the gene expression and related distributed spatial patterns. Since a variety of brain solutions can be dynamically held in the neuronal networks of the brain with different activity patterns and functional connectivity, both node-centric and graph-centric tasks are involved in this application. In this study, we used an individual generative model and high order graph analysis for the region of interest recognition areas of the brain with abnormal connection during performing certain tasks and resting-state or decompose irregular observations. Accordingly, a high order framework of Variational Graph Autoencoder with a Gaussian distributer was proposed in the paper to analyze the functional data in brain imaging studies in which Generative Adversarial Network is employed for optimizing the latent space in the process of learning strong non-rigid graphs among large scale data. Furthermore, the possible modes of correlations were distinguished in abnormal brain connections. Our goal was to find the degree of correlation between the affected regions and their simultaneous occurrence over time. We can take advantage of this to diagnose brain diseases or show the ability of the nervous system to modify brain topology at all angles and brain plasticity according to input stimuli. In this study, we particularly focused on Alzheimer’s disease.


2015 ◽  
Vol 113 (9) ◽  
pp. 3159-3171 ◽  
Author(s):  
Caroline D. B. Luft ◽  
Alan Meeson ◽  
Andrew E. Welchman ◽  
Zoe Kourtzi

Learning the structure of the environment is critical for interpreting the current scene and predicting upcoming events. However, the brain mechanisms that support our ability to translate knowledge about scene statistics to sensory predictions remain largely unknown. Here we provide evidence that learning of temporal regularities shapes representations in early visual cortex that relate to our ability to predict sensory events. We tested the participants' ability to predict the orientation of a test stimulus after exposure to sequences of leftward- or rightward-oriented gratings. Using fMRI decoding, we identified brain patterns related to the observers' visual predictions rather than stimulus-driven activity. Decoding of predicted orientations following structured sequences was enhanced after training, while decoding of cued orientations following exposure to random sequences did not change. These predictive representations appear to be driven by the same large-scale neural populations that encode actual stimulus orientation and to be specific to the learned sequence structure. Thus our findings provide evidence that learning temporal structures supports our ability to predict future events by reactivating selective sensory representations as early as in primary visual cortex.


2014 ◽  
Vol 9 (12) ◽  
pp. 1904-1913 ◽  
Author(s):  
Silvio Ionta ◽  
Roberto Martuzzi ◽  
Roy Salomon ◽  
Olaf Blanke

Sign in / Sign up

Export Citation Format

Share Document