Role of Salicylic Acid in Tomato Defense against Cotton Bollworm, Helicoverpa armigera Hubner

2004 ◽  
Vol 59 (11-12) ◽  
pp. 856-862 ◽  
Author(s):  
Jinying Peng ◽  
Xiaojun Deng ◽  
Shihai Jia ◽  
Jianhua Huang ◽  
Xuexia Miao ◽  
...  

We investigated the role of the salicylic acid (SA) signaling pathway in defense responses of tomato plants to the herbivore, cotton bollworm. After exposure to the cotton bollworm, tomato leaves rapidly accumulated a high level of SA. The transcription of PR1 and BGL2 genes, the marker genes of SA pathway, was up-regulated. An enhanced endogenous SA level was accompanied by an increase in the endogenous H2O2 level as compared with controls. Spraying tomato plants with a solution containing either SA or methyl salicylic acid (Me-SA), the H2O2 level dramatically increased. These data proved that the SA pathway was involved in the tomato plant defense responses to the herbivore.

1995 ◽  
Vol 92 (10) ◽  
pp. 4134-4137 ◽  
Author(s):  
Z. Chen ◽  
J. Malamy ◽  
J. Henning ◽  
U. Conrath ◽  
P. Sanchez-Casas ◽  
...  

2003 ◽  
Vol 16 (11) ◽  
pp. 1022-1029 ◽  
Author(s):  
Pradeep Kachroo ◽  
Aardra Kachroo ◽  
Ludmila Lapchyk ◽  
David Hildebrand ◽  
Daniel F. Klessig

The Arabidopsis mutants ssi2 and fab2 are defective in stearoyl ACP desaturase, which causes altered salicylic acid (SA)- and jasmonic acid (JA)-mediated defense signaling. Both ssi2 and fab2 plants show spontaneous cell death, express PR genes constitutively, accumulate high levels of SA, and exhibit enhanced resistance to bacterial and oomycete pathogens. In contrast to constitutive activation of the SA pathway, ssi2 and fab2 plants are repressed in JA-mediated induction of the PDF1.2 gene, which suggests that the SSI2-mediated signaling pathway modulates cross talk between the SA and JA pathways. In this study, we have characterized two recessive nonallelic mutants in the ssi2 background, designated as rdc (restorer of defective cross talk) 2 and rdc8. Both ssi2 rdc mutants are suppressed in constitutive SA signaling, show basal level expression of PR-1 gene, and induce high levels of PDF1.2 in response to exogenous application of JA. Interestingly, while the rdc8 mutation completely abolishes spontaneous cell death in ssi2 rdc8 plants, the ssi2 rdc2 plants continue to show some albeit reduced cell death. Fatty acid (FA) analysis showed a reduction in 16:3 levels in ssi2 rdc8 plants, which suggests that this mutation may limit the flux of FAs into the pro-karyotic pathway of glycerolipid biosynthesis. Both rdc2 and rdc8 continue to accumulate high levels of 18:0, which suggests that 18:0 levels were responsible for neither constitutive SA signaling nor repression of JA-induced expression of the PDF1.2 gene in ssi2 plants. We also analyzed SA and JA responses of the fab2-derived shs1 mutant, which accumulates levels of 18:0 over 50% lower than those in the fab2 plants. Even though fab2 shs1 plants were morphologically bigger than fab2 plants, they expressed PR genes constitutively, showed HR-like cell death, and accumulated elevated levels of SA. However, unlike the ssi2 rdc plants, fab2 shs1 plants were unable to induce high levels of PDF1.2 expression in response to exogenous application of JA. Together, these results show that defective cross talk in ssi2 can be restored by second site mutations and is independent of morphological size of the plants, cell death, and elevated levels of 18:0.


2020 ◽  
Vol 33 (2) ◽  
pp. 223-234 ◽  
Author(s):  
Sophie Vergnes ◽  
Damien Gayrard ◽  
Marine Veyssière ◽  
Justine Toulotte ◽  
Yves Martinez ◽  
...  

Streptomycetes are soil-dwelling, filamentous actinobacteria and represent a prominent bacterial clade inside the plant root microbiota. The ability of streptomycetes to produce a broad spectrum of antifungal metabolites suggests that these bacteria could be used to manage plant diseases. Here, we describe the identification of a soil Streptomyces strain named AgN23 which strongly activates a large array of defense responses when applied on Arabidopsis thaliana leaves. AgN23 increased the biosynthesis of salicylic acid, leading to the development of salicylic acid induction deficient 2 (SID2)-dependent necrotic lesions. Size exclusion fractionation of plant elicitors secreted by AgN23 showed that these signals are tethered into high molecular weight complexes. AgN23 mycelium was able to colonize the leaf surface, leading to plant resistance against Alternaria brassicicola infection in wild-type Arabidopsis plants. AgN23-induced resistance was found partially compromised in salicylate, jasmonate, and ethylene mutants. Our data show that Streptomyces soil bacteria can develop at the surface of plant leaves to induce defense responses and protection against foliar fungal pathogens, extending their potential use to manage plant diseases.


2009 ◽  
Vol 83 (19) ◽  
pp. 9720-9730 ◽  
Author(s):  
Xiao Wang ◽  
Sameer P. Goregaoker ◽  
James N. Culver

ABSTRACT An interaction between the helicase domain of the Tobacco mosaic virus (TMV) 126-/183-kDa replicase protein(s) and the Arabidopsis thaliana NAC domain transcription factor ATAF2 was identified via yeast two-hybrid and in planta immunoprecipitation assays. ATAF2 is transcriptionally induced in response to TMV infection, and its overexpression significantly reduces virus accumulation. Proteasome inhibition studies suggest that ATAF2 is targeted for degradation during virus infection. The transcriptional activity of known defense-associated marker genes PR1, PR2, and PDF1.2 significantly increase within transgenic plants overexpressing ATAF2. In contrast, these marker genes have reduced transcript levels in ATAF2 knockout or repressor plant lines. Thus, ATAF2 appears to function in the regulation of host basal defense responses. In response to TMV infections, ATAF2 and PR1 display increased transcript accumulations in inoculated tissues but not in systemically infected tissues. ATAF2 and PR1 transcript levels also increase in response to salicylic acid treatment. However, the salicylic acid treatment of systemically infected tissues did not produce a similar increase in either ATAF2 or PR1 transcripts, suggesting that host defense responses are attenuated during systemic virus invasion. Similarly, noninfected ATAF2 knockout or ATAF2 repressor lines display reduced levels of PR1 transcripts when treated with salicylic acid. Taken together, these findings suggest that the replicase-ATAF2 interaction suppresses basal host defenses as a means to promote systemic virus accumulation.


Revista CERES ◽  
2015 ◽  
Vol 62 (3) ◽  
pp. 323-331 ◽  
Author(s):  
Edson Ampélio Pozza ◽  
Adélia Aziz Alexandre Pozza ◽  
Deila Magna dos Santos Botelho

All essential nutrients can affect the incidence and severity of plant diseases. Although silicon (Si) is not considered as an essential nutrient for plants, it stands out for its potential to decrease disease intensity in many crops. The mechanism of Si action in plant resistance is still unclear. Si deposition in plant cell walls raised the hypothesis of a possible physical barrier to pathogen penetration. However, the increased activity of phenolic compounds, polyphenol oxidases and peroxidases in plants treated with Si demonstrates the involvement of this element in the induction of plant defense responses. The studies examined in this review address the role of Si in disease control and the possible mechanisms involved in the mode of Si action in disease resistance in plants.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1201
Author(s):  
Aayushree Kharel ◽  
Md Tohidul Islam ◽  
James Rookes ◽  
David Cahill

Pathogens and plants are in a constant battle with one another, the result of which is either the restriction of pathogen growth via constitutive or induced plant defense responses or the pathogen colonization of plant cells and tissues that cause disease. Elicitins are a group of highly conserved proteins produced by certain oomycete species, and their sterol binding ability is recognized as an important feature in sterol–auxotrophic oomycetes. Elicitins also orchestrate other aspects of the interactions of oomycetes with their plant hosts. The function of elicitins as avirulence or virulence factors is controversial and is dependent on the host species, and despite several decades of research, the function of these proteins remains elusive. We summarize here our current understanding of elicitins as either defense-promoting or defense-suppressing agents and propose that more recent approaches such as the use of ‘omics’ and gene editing can be used to unravel the role of elicitins in host–pathogen interactions. A better understanding of the role of elicitins is required and deciphering their role in host–pathogen interactions will expand the strategies that can be adopted to improve disease resistance and reduce crop losses.


2008 ◽  
Vol 63 (5-6) ◽  
pp. 313-320 ◽  
Author(s):  
Shu Yuan ◽  
Hong-Hui Lin

Salicylic acid (SA) plays many roles in plant physiology. Besides pathogenesis-related resistance, SA is involved in the response to abiotic stress. However, the effects of SA on plant resistance to abiotic stress were found contradictionary, and the actual role of SA in abiotic stress remains unresolved. Generally, deficiency of SA or a very high level of SA increase the plant susceptibility to abiotic stress. The optimal levels for the highest stress tolerance range from 0.1 mm to 0.5 mm for most plants. But the role of SA at a certain level in moderate and severe abiotic stress may be different. This can be attributed to redox regulations in plant cells. In this paper, we discuss the relationship between reactive oxygen species (ROS) and SA, and propose a subsequent intracellular signal transduction network of SA and ROS under abiotic stress. Anti-stress substances besides antioxidant enzymes induced by SA are also summarized.


2017 ◽  
Vol 69 (5) ◽  
pp. 1051-1064 ◽  
Author(s):  
Jin Ma ◽  
Jun Chen ◽  
Min Wang ◽  
Yulong Ren ◽  
Shuai Wang ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Beibei Li ◽  
Ruolin Wang ◽  
Shiya Wang ◽  
Jiang Zhang ◽  
Ling Chang

Cytokinins (CKs) can modulate plant immunity to various pathogens, but how CKs are involved in plant defense responses to the necrotrophic pathogen Botrytis cinerea is still unknown. Here, we found that B. cinerea infection induced transcriptional changes in multiple genes involved in the biosynthesis, degradation, and signaling of CKs, as well as their contents, in pathogen-infected Arabidopsis leaves. Among the CKs, the gene expression of CYTOKININ OXIDASE/DEHYDROGENASE 5 (CKX5) was remarkably induced in the local infected leaves and the distant leaves of the same plant without pathogen inoculation. Cis-zeatin (cZ) and its riboside (cZR) accumulated considerably in infected leaves, suggesting an important role of the cis-zeatin type of CKs in the plant response to B. cinerea. Cytokinin double-receptor mutants were more susceptible to B. cinerea infection, whereas an exogenous CK treatment enhanced the expression levels of defense-related genes and of jasmonic acid (JA) and ethylene (ET), but not salicylic acid (SA), resulting in higher resistance of Arabidopsis to B. cinerea. Investigation of CK responses to B. cinerea infection in the JA biosynthesis mutant, jar1-1, and ET-insensitive mutant, ein2-1, showed that CK signaling and levels of CKs, namely, those of isopentenyladenine (iP), isopentenyladenine riboside (iPR), and trans-zeatin (tZ), were enhanced in jar1-1-infected leaves. By contrast, reductions in iP, iPR, tZ, and tZ riboside (tZR) as well as cZR contents occurred in ein2-1-infected leaves, whose transcript levels of CK signaling genes were likewise differentially regulated. The Arabidopsis Response Regulator 5 (ARR5) gene was upregulated in infected leaves of ein2-1 whereas another type-A response regulator, ARR16, was significantly downregulated, suggesting the existence of a complex regulation of CK signaling via the ET pathway. Accumulation of the cis-zeatin type of CKs in B. cinerea-infected leaves depended on ET but not JA pathways. Collectively, our findings provide evidence that CK responds to B. cinerea infection in a variety of ways that are differently modulated by JA and ET pathways in Arabidopsis.


Sign in / Sign up

Export Citation Format

Share Document