Antibacterial Activity and Composition of the Essential Oil of Ziziphora clinopodioides subsp. bungeana (Juz.) Rech. f. from Iran

2006 ◽  
Vol 61 (9-10) ◽  
pp. 677-680 ◽  
Author(s):  
Ali Sonboli ◽  
Mohammad Hossein Mirjalili ◽  
Javad Hadian ◽  
Samad Nejad Ebrahimi ◽  
Morteza Yousefzadi

AbstractThe chemical composition of the essential oil obtained from the aerial flowering parts of Ziziphora clinopodioides subsp. bungeana (Juz.) Rech. f. was analyzed by GC and GCMS. Thirty-two components representing 97.1% of the total oil were identified. Oxygenated monoterpenes (94.3%) were the predominant fraction of the oil with pulegone (65.2%), isomenthone (11.9%), 1,8-cineole (7.8%) and piperitenone (6.5%) as the main constituents. Antibacterial activity of the oil and also its two main components (pulegone and 1,8-cineole) were tested against seven bacteria. It was found that the oil exhibited interesting antibacterial activity against Staphylococcus epidermidis, S. aureus, Escherichia coli and Bacillus subtilis with MIC values of 3.75 mg/ml.

2009 ◽  
Vol 4 (2) ◽  
pp. 1934578X0900400 ◽  
Author(s):  
Ali Sonboli ◽  
Abbas Gholipour ◽  
Morteza Yousefzadi ◽  
Mehran Mojarrad

The antibacterial activity and chemical composition of the essential oil obtained from the aerial flowering parts of Nepeta menthoides were analyzed by GC and GC-MS. Twenty-nine compounds representing 97.6% of the total oil were identified. Oxygenated monoterpenes (71.9%) were the principal fraction of the oil with 1,8-cineole (33.8%) and 4aα-7α-7aα-nepetalactone (23.2%) as the main constituents. The antibacterial activity of the oil and its two main constituents were tested against seven bacteria. High activity of the oil and its two main constituents was demonstrated against all the tested bacteria with MIC values in the range of 1.8 - 7.2, 0.9 - 7.2 and 1.8 - 15 mg/mL, respectively.


2011 ◽  
Vol 183-185 ◽  
pp. 920-923 ◽  
Author(s):  
Zhan Guo Lu ◽  
Xiu Hui Li ◽  
Wei Li

The essential oil (yield 1.46%, w/w) of Monarda citriodora flowers obtained by hydrodistillation was analysed by GC-MS, Totally 30 constituents were detected. 26 compounds representing 97.23% were identified, of which thymol (44.599%), 1,8-cineole (23.613%), α-phellandrene (4.815%) and β-cymene (4.019%) were major compounds. Thus, the monoterpenes and sesquiterpenes were the predominant portions of the oil. Antibacterial ability of Monarda citriodora essential oil was tested by disc agar diffusion against Escherichia coli, Bacillus subtilis, and Staphylicoccus albus. Antibacterial properties were compared to penicillin. Higher antibacterial activity was observed.


2018 ◽  
Vol 16 (S1) ◽  
pp. S155-S163 ◽  
Author(s):  
S. Mehalaine ◽  
O. Belfadel ◽  
T. Menasria ◽  
A. Messaili

The present study was carried out to determine, for the first time, the chemical composition and antibacterial activity of essential oils derived from the aerial parts of three aromatic plants Thymus algeriensis Boiss & Reut, Rosmarinus officinalis L., and Salvia officinalis L. growing under semiarid conditions. The essential oils were chemically analyzed and identified by gas chromatography (GC) and GC/ mass spectrometry (GC/MS) and their antimicrobial activity was individually evaluated against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa using both agar disk diffusion and agar dilution methods. The major constituents of Thymus algeriensis essential oil were identified as camphor (13.62%), 1,8-cineol (6.00%), borneol (5.74%), viridiflorol (4.00%), and linalool (3.93%). For Rosmarinus officinalis essential oil, 48 compounds were characterized, of which the main constituents were camphor (17.09%), Z-β-ocimene (10.88%), isoborneol (9.68%), α-bisabolol (7.89%), and borneol (5.11%). While, Salvia officinalis essential oil was characterized by β-thujone (16.44%), followed by viridiflorol (10.93%), camphor (8.99%), 1,8-cineol (8.11%), trans-caryophyllene (5.85%), and α-humulene (4.69%) as the major components. Notably, results from antibacterial screening indicated that Thymus algeriensis and Salvia officinalis essential oils exhibited a strong inhibitory effect against both Escherichia coli and Staphylococcus aureus compared to Rosmarinus officinalis essential oil. Further, less activity was recorded against Pseudomonas aeruginosa for the three tested essential oils.


2015 ◽  
Vol 43 (2) ◽  
pp. 432-438 ◽  
Author(s):  
Aneta WESOŁOWSKA ◽  
Monika GRZESZCZUK ◽  
Dorota JADCZAK ◽  
Paweł NAWROTEK ◽  
Magdalena STRUK

The chemical composition of the essential oils obtained by hydrodistillation from the aerial parts of Thymus serpyllum and Thymus serpyllum‘Aureus’ has been investigated by gas chromatography-mass spectrometry (GC-MS). Forty-seven compounds (99.67% of the total oil) wereidentified in the essential oil of T. serpyllum. The main components found in the oil were carvacrol (37.49%), -terpinene (10.79%), -caryophyllene (6.51%), p-cymene (6.06%), (E)--ocimene (4.63%) and -bisabolene (4.51%). Similarly, carvacrol (44.93%), -terpinene(10.08%), p-cymene (7.39%) and -caryophyllene (6.77%) dominated in the oil of T. serpyllum ‘Aureus’. A total of forty three compounds wereidentified in this oil, representing 99.49% of the total oil content. On the basis of the obtained data it was proved that the content of 1-octen-3-ol,eucalyptol, (Z)--ocimene, (E)--ocimene, -terpinene, carvacrol methyl ether, germacrene D and -bisabolene was significantly higher for T.serpyllum while T. serpyllum ‘Aureus’ was characterized by a significantly higher content of 3-octanone, 3-octanol, p-cymene, borneol andcarvacrol. The isolated essential oils were evaluated for their antimicrobial activity against nine reference strains (Escherichia coli, Staphylococcusaureus, Staphylococcus epidermidis, Streptococcus agalactiae, Enterococcus faecalis, Bacillus cereus, Micrococcus luteus, Proteus vulgaris and Candidaalbicans) by the microdilution technique. Based on this test, the minimum inhibitory concentrations (MIC) of essential oil were calculated. Thevolatile oil obtained from T. serpyllum showed the highest antimicrobial activity relative to the strain of E. coli (MIC=0.025 μL/mL) and to theyeast C. albicans (MIC=0.05 μL/mL). Similarly, a significant antimicrobial activity exhibited T. serpyllum ‘Aureus’ essential oil, although the MICvalues obtained in that case for E. coli and C. albicans strains were twice as high and were respectively 0.05 μL/mL and 0.1 μL/mL.


2012 ◽  
Vol 7 (9) ◽  
pp. 1934578X1200700 ◽  
Author(s):  
Megil J. McNeil ◽  
Roy B. R. Porter ◽  
Lawrence A. D. Williams

The chemical composition of the essential oil obtained from the aerial parts of Cleome serrata by hydrodistillation was analyzed by employing GC-FID, GC-MS and RI. Fourteen compounds comprising 90.4% of the total oil composition were characterized. The main components identified were ( Z)-phytol (53.0%) and di(2-ethylhexyl)-phthalate (DEHP) (14.7%). The oil was evaluated for its in vitro antimicrobial activities against nine pathogenic microorganisms using the filter paper disc diffusion method. Moderate antimicrobial activity was observed against five of the pathogens assayed. In addition, the essential oil was tested against the sweet potato weevil, Cylas formicarius elegantulus. Strong knockdown insecticidal activity was observed.


2009 ◽  
Vol 4 (7) ◽  
pp. 1934578X0900400 ◽  
Author(s):  
Jesús Palá-Paúl ◽  
Jaime Usano-Alemany ◽  
Elena Granda ◽  
Ana-Cristina Soria

The chemical composition of the oil of Chamaecyparis nootkatensis (D. Don) Spach. has been analysed by gas chromatography (GC) and gas chromatography coupled to mass spectrometry (GCMS). A total of 34 compounds were identified representing more than 90% of the total oil. The oil was richer in monoterpenes than in sesquiterpenes, the major constituents being limonene (53.2%), δ-3-carene (21.0%) and α-pinene (12.2%). The antibacterial and antifungal activities of the oil were also tested against Candida albicans, Bacillus subtilis, Enterobacter aerogenes, Enterococcus faecalis, Escherichia coli, Micrococcus luteus, Pseudomonas aeruginosa, Salmonella sp. and Serratia marcescens. Only two of these, Bacillus subtilis and Candida albicans, were sensitive to the treatment, inhibition zones of 11 and 14 mm diameter being obtained, respectively. As far as we know, this is the first report of the antifungal and antibacterial activity of this species.


2012 ◽  
Vol 7 (1) ◽  
pp. 1934578X1200700
Author(s):  
Nasser A. Awadh Ali ◽  
Rebecca A. Crouch ◽  
Mohamed A. Al-Fatimi ◽  
Norbert Arnold ◽  
Axel Teichert ◽  
...  

The chemical composition of the hydrodistilled leaf essential oil from Pulicaria stephanocarpa Balf Fil was determined by GC-MS analysis, and its antimicrobial, antioxidant and anticholinesterase (AChE) activities were evaluated. Eighty-three compounds were identified representing 97.2% of the total oil. ( E)-Caryophyllene 13.4%, ( E)-nerolidol 8.5%, caryophyllene oxide 8.5%, α-cadinol 8.2% spathulenol 6.8% and τ-cadinol 4.7%, were the main components. Antimicrobial activity of the oil, evaluated using the disc diffusion and broth dilution methods, demonstrated the highest susceptibility on Gram-positive bacteria and Candida albicans. The free radical scavenging ability of the oil was assessed by the DPPH assay to show antiradical activity with IC50 of 330 μg/mL. Moreover, the oil revealed an AChE inhibitory activity of 47% at a concentration of 200 μg/mL using Ellman's method.


2012 ◽  
Vol 9 (2) ◽  
pp. 796-800
Author(s):  
I. Labed ◽  
S. Chibani ◽  
Z. Semra ◽  
A. Kabouche ◽  
T. Aburjai ◽  
...  

Essential oil extracted from fresh aerial parts ofAthamanta siculaL. (syn.Tingara sicula) was analysed by gas phase chomatography coupled to mass spectrometry (GC-MS). The main constituents were: germacrene B (88.5%) and apiol (4.9%). Comparing with the tested bacteria, the growth ofEscherichia coliandKlebsiella pneumoniaestrains was more inhibited by the essential oil ofA. sicula.


2005 ◽  
Vol 68 (4) ◽  
pp. 790-795 ◽  
Author(s):  
S. SANTOYO ◽  
S. CAVERO ◽  
L. JAIME ◽  
E. IBAÑEZ ◽  
F. J. SEÑORÁNS ◽  
...  

The chemical composition and antimicrobial activity of essential oil–rich fractions obtained by supercritical CO2 extraction from Rosmarinus officinalis L. were investigated. Gas chromatography–mass spectroscopy analysis of these fractions resulted in the identification of 33 compounds of the essential oil. The main components of these fractions were α-pinene, 1,8-cineole, camphor, verbenone, and borneol, constituting ca. 80% of the total oil. The antimicrobial activity was investigated by the disc diffusion and broth dilution methods against six microbial species, including gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis), gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa), a yeast (Candida albicans), and a fungus (Aspergillus niger). All of the essential oil–rich fractions obtained showed antimicrobial activity against all of the microorganisms tested, with inhibition zones and minimal bactericidal and fungicidal concentration values in the range of 17 to 33 mm and 2.25 to 0.25 mg/ml, respectively. The most active fraction was the one obtained in experiment 4 (4% ethanol as modifier; extraction pressure, 25 MPa; extraction temperature, 60°C). S. aureus was found to be the most sensitive bacteria to the rosemary extracts, whereas the least susceptible was A. niger. α-Pinene, 1,8-cineole, camphor, verbenone, and borneol standards also showed antimicrobial activity against all the microorganisms tested, borneol being the most effective followed by camphor and verbenone. In that way, it was confirmed that essential oil from experiment 4, with the best antimicrobial activity, presented the highest quantity of camphor, borneol, and verbenone.


2019 ◽  
Vol 20 (10) ◽  
Author(s):  
Souheila Bounab ◽  
Takia Lograda ◽  
Messaoud Ramdani ◽  
Pierre Chalard ◽  
Gilles Figueredo

Abstract. Souhila B, Takia L, Messaoud R, Pierre C, Gilles F. 2019. Chemical composition and antibacterial activity of essential oils of Thymelaea hirsuta from Algeria. Biodiversitas 20: 2868-2876. The objectives of this study were to determine the chemical composition and to evaluate the antibacterial activity of Thymelaea hirsuta (L.) Endl., essential oils from seven sampling locations in M'sila region (Algeria). Extraction of essential oils was carried out by the hydro-distillation; the analysis of chemical composition of essential oil was carried out by GC-MS. Antimicrobial activity was performed by disc diffusion method at the essential oil concentration of non-diluted and diluted (1:2, 1:4 and 1:8 v:v of DMSO) against eight species of bacteria. The results showed that the average yields of essential oils were 0.3 ± 0.12%. A total of 45 components were identified, averaging 98.2 ± 1.85% of the total oils. The main components were nonanal-n (10.39 ± 3.21%), hexadecanoic acid (9.77 ± 2.81%), nonanoic acid (9.13 ± 6.49%), triacontane (7.2 ± 3.34%), isopropyl tetradecanoate (6.16 ± 1.99%) and tridecane (4.87 ± 3.1%). Based on the UPGMA cluster analysis, there were two clades of T. hirsuta. T. hirusta has a chemical polymorphism with different chemotypes marked in nature. There were four chemotypes identified in the essential oil of T. hirsuta in the region of M'sila. The essential oil of T. hirsuta has antibacterial activity against eight tested bacteria on the concentration-dependentt manner.


Sign in / Sign up

Export Citation Format

Share Document