Synthesis and antimicrobial properties of N-substituted derivatives of (E)-2′,3″-thiazachalcones

2015 ◽  
Vol 70 (1-2) ◽  
pp. 45-50
Author(s):  
Asu Usta ◽  
Hacer Taşkıran

Abstract N-alkyl substituted 2′,3″-thiazachalcones {3-[(1E)-3-(4-methylthiophene-2-yl)-3-oxoprop-1-en-1-yl]-1-alkyl (C5–12,14) pyridinium bromides} were synthesized by a two-step reaction. The newly synthesized compounds were characterized by IR, 1H NMR, 13C NMR, elemental analysis and mass spectral studies. The synthesized compounds were tested for antibacterial activities and found to be more active against Gram-positive as compared to Gram-negative bacteria.

Author(s):  
Falguni Bhabhor ◽  
K. Satish ◽  
Hiren Variya ◽  
Vikram Panchal

In this present work base catalyzed method used for formation of Chalcone of (E)-4-(3-(4-hydroxyphenyl) acryloyl)-5-methyl-2(p-tolyl)-1H-pyrazol-3(2H)-one (II) reacted with derivatives of S-benzo [d] thiol-2yl-2-chloroethanethioate (Ia-f) resulted in formation of corresponding derivatives of (E)-S-benzo [d] thiazol-2-yl 2-(4-(3-(5-methyl-3oxo-2(p-tolyl)-2,3-dihydro-1H-pyrazol-4-yl)-3-oxoprop-1-en-1-yl) phenoxy) etanethioate (IIIa-f) was confirmed by spectral characterization such as IR,1H NMR, LC-MS and elemental analysis. The compounds were screened for their antimicrobial properties against a broad panel Gram-positive and Gram-negative bacteria as well as fungi.


2014 ◽  
Vol 69 (9-10) ◽  
pp. 969-981 ◽  
Author(s):  
Olcay Bekircan ◽  
Emre Mentese ◽  
Serdar Ulker

Abstract In the present investigation, the key intermediate acetohydrazide derivative 5 was synthesized starting from 3-(4-methoxybenzyl)-4-amino-4,5-dihydro-1,2,4-triazol-5-one (1) by a four-step reaction. Thiosemicarbazides 6a-f and arylidenehydrazide derivatives 8a-d were obtained from compound 5. The cyclization of compounds 6a-f in the presence of NaOH resulted in the formation of compounds 7a-f. The compounds were characterized by IR, 1H NMR, 13C NMR spectroscopy, elemental analysis and mass spectral studies. The compounds were tested for their anti-lipase, anti-α-glucosidase and anti-mycobacterial activities. Compounds 6b and 8c exhibited excellent anti-lipase activity, and compound 8d showed excellent anti-a-glucosidase activity. Compounds 3 and 4 exhibited good antituberculosis activity


Author(s):  
Shipra Baluja ◽  
Nilesh Godvani ◽  
Sumitra Chanda

In this work, some novel derivatives of Cyanopyridines and Isoxazoles were synthesized using Vilsmeier-Haack reagent and their structures were confirmed by FTIR, 1H NMR and mass spectroscopic methods. The antibacterial activities of these synthesized compounds were studied in DMSO and DMF by agar well diffusion method against some Gram positive and Gram negative bacteria. It is observed that activity depends upon three S: solvent, strain and structure.


2000 ◽  
Vol 55 (11-12) ◽  
pp. 1030-1034 ◽  
Author(s):  
Gudddadarangavvanahally K. Jayaprakasha ◽  
Pradeep S. Negi ◽  
Sagarika Sikder ◽  
Lingamallu Jagan Mohanrao ◽  
Kurian K. Sakariah

Citrus peels were successively extracted with hexane, chloroform and acetone using a soxhlet extractor. The hexane and chloroform extracts were fractionated into alcohol-soluble and alcohol-insoluble fractions. These fractions were tested against different gram positive and gram negative bacteria. The EtOH-soluble fraction was found to be most effective. Fractionation of EtOH -soluble fraction on silica gel column yielded three polymethoxylated flavones, namely desmethylnobiletin, nobiletin and tangeretin. Their structures were confirm ed by UV, 1H, 13C NMR and mass spectral studies. The findings indicated a potential of these natural compounds as bio preservatives in food applications.


2012 ◽  
Vol 9 (1) ◽  
pp. 481-486
Author(s):  
K. Anuradha ◽  
R. Rajavel

Novel Cu(II),Ni(II) and VO(II) complexes are synthesized with N1,N4-bis(2-aminobenzylidene)benzene-1,4-diamine (L). Complexes were characterized by elemental analysis, molar conductance, IR, UV and EPR. Spectral studies reveals a square planner geomentry for Cu(II), Ni(II) complexes and square pyramidal for VO(II) complex. The ligand and its complexes were also evaluated against the growth of gram positive bacteria and gram negative bacteria.


2019 ◽  
Vol 31 (5) ◽  
pp. 1087-1090 ◽  
Author(s):  
Pradip P. Deohate ◽  
Roshani S. Mulani

Microwave irradiative synthesis of triazine substituted pyrazoles i.e. (4-benzylideneamino-6-methyl-[1,3,5]-triazin-2-yl)-(5-methyl-2-substituted benzoyl/isonicotinoyl/cinnamoyl-pyrazol-3-yl)-amines have been achieved by the cyclocondensation of N-(4-benzylideneamino-6-methyl-[1,3,5]-triazin-2-yl)-3-oxo butyramide with substituted acid hydrazides. Synthesis of required butyramide was done by reacting 2,4-diamino-6-methyl-[1,3,5]-triazine with benzaldehyde and then condensing the product with ethyl acetoacetate. Structural investigation of synthesized compounds has been done by chemical transformation, elemental analysis and IR, 1H NMR, mass spectral studies. Study of antitubercular and antimicrobial activity of title compounds against some selected Gram-positive and Gram-negative microorganisms was performed to establish the relationship between structure and activity of compound.


2005 ◽  
Vol 2 (2) ◽  
pp. 109-112
Author(s):  
A. K. Parekh ◽  
K. K. Desai

Some new chalcones have been prepared by Claisen-schmidt condensation of ketone and different aromatic aldehydes. These chalcones on condensation with urea in presence of acid gave Pyrimidine-2-ones. The synthesized compounds have been characterized by elemental analysis, IR and1H NMR spectral data. They have been screened for their antibacterial activity against Gram positive bacteria B. subtillis & S. aureus and Gram negative bacteria E. coli & S. typhi.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
A. R. Saundane ◽  
Prabhaker Walmik

2-N-(2-Phenyl-1H-indol-3-yl)imino-4-arylthiazoles (3a–c) were used as key synthons for the preparation of (4-arylthiazol-2-yl)-4-(2-phenyl-1H-indol-3-yl)azetidin-2-ones (4a–c) and 3-(4-arylthiazol-2-yl)-2-(2-phenyl-1H-indol-3-yl)thiazolidin-4-ones (5a–c). These newly synthesized compounds have been characterized with the help of IR,1H NMR,13C NMR, and mass spectral studies. All compounds were screened for their antioxidant, antimicrobial, antimycobacterial, and cytotoxic activities. Some of the compounds displayed excellent activity.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Mohamed A. Riswan Ahamed ◽  
Raja S. Azarudeen ◽  
N. Mujafar Kani

Terpolymer of 2-amino-6-nitro-benzothiazole-ethylenediamine-formaldehyde (BEF) has been synthesized and characterized by elemental analysis and various spectral techniques like FTIR, UV-Visible, and1H and13C-NMR. The terpolymer metal complexes were prepared with Cu2+, Ni2+, and Zn2+metal ions using BEF terpolymer as a ligand. The complexes have been characterized by elemental analysis and IR, UV-Visible, ESR,1H-NMR, and13C-NMR spectral studies. Gel permeation chromatography was used to determine the molecular weight of the ligand. The surface features and crystalline behavior of the ligand and its complexes were analyzed by scanning electron microscope and X-ray diffraction methods. Thermogravimetric analysis was used to analyze the thermal stability of the ligand and its metal complexes. Kinetic parameters such as activation energy(Ea)and order of reaction (n) and thermodynamic parameters, namely,ΔS,ΔF,S*, andZ, were calculated using Freeman-Carroll (FC), Sharp-Wentworth (SW), and Phadnis-Deshpande (PD) methods. Thermal degradation model of the terpolymer and its metal complexes was also proposed using PD method. Biological activities of the ligand and its complexes were tested againstShigella sonnei,Escherichia coli,Klebsiellaspecies,Staphylococcus aureus,Bacillus subtilis, andSalmonella typhimuriumbacteria andAspergillus flavus,Aspergillus niger,Penicilliumspecies,Candida albicans,Cryptococcus neoformans,Mucor speciesfungi.


2018 ◽  
Vol 22 (2) ◽  
pp. 267-271
Author(s):  
V.G. Paliy ◽  
I.G. Paliy ◽  
A.O. Dudar ◽  
D.V. Paliy ◽  
A. V. Kulyk

Successful research by scientists of new synthetic substances of various chemical groups contributes to the broadening of the arsenal of antimicrobial drugs for the prevention and treatment of purulent-inflammatory diseases. Antimicrobial drugs, as a rule, suppress pathogenic, invasive, adhesive properties and reduce the resistance of microorganisms to antibiotics in pathogens of supportive inflammatory diseases; significantly increase the effectiveness of treatment of diseases of infectious origin. The purpose of the study was to study the physicochemical, antimicrobial properties of derivatives of menthol, phenol and quinoline. The results of the study of physicochemical, antimicrobial properties of six chemical compounds of menthol, quinoline, and phenol derivatives using the principle of complex research, in which physicochemical, microbiological methods were used, are presented. There was shown that quaternary ammonium compounds of the menthol derivatives were alike white powders with a molecular weight of 581–693, a melting point of 990 to 1850° C. The chemicals are soluble in water, ethanol. Quinoline preparations have a molecular weight of 687; 756, melting point 178–2000°C; dissolved in ethanol. Compounds of phenol had a molecular weight of 111, 112, a melting point of 1020, 1100°C was soluble in ethanol. It has been established that synthesized substances possess a wide spectrum of antimicrobial action on Gram-positive, Gram-negative bacteria, Candida albicans. In antibiotic resistant strains of Staphylococci no markers of resistance to drugs containing in the molecule menthol, phenol, quinoline were found. In complex physical and chemical systems, it was important to study the coefficient of surface tension of solutions of drugs, which was an important objective physical indicator of the molecular state of various drugs. Distilled water was used as a control. Experiments were performed according to a well-known technique. According to the results of the study, in the control the surface tension of water was it was found to be 55,70 dn/cm2. In an experiment with 0,1% solution of decamethoxin; the drug number 2 was 40,80 dn/cm2 and 38,20 dn/cm2. In derivatives of quinoline (DN, drug № 4), was 39,60 dn/cm2 and 34,50 dn/cm2. Solutions of phenol (preparations №5; №6) were characterized by surface tension 32,40–43,50 dn/cm2. Surface tension of solutions of preparations depended on their chemical structure. The antimicrobial properties of the preparations were determined on the museum and clinical strains of microorganisms, which had typical tynctorial, morphological, and cultural characteristics. For a complete biological characterization in strains of Staphylococci, the formation of coagulase enzymes, lecithovitellase, hemolysins, and mannitol fermentation in anaerobic conditions were studied. At 12 museum and clinical strains of bacteria, bacteriostatic and bactericidal effects of six drugs, which are derivatives of menthol (DK, №2), quinoline (DN, №4), phenol (preparations №5, №6), have been detected. Derivatives of menthol acted bactericidal to Staphylococci at doses of 0,48-3,9 μg/ml; Quinoline derivatives in the range of 7,8–15,6 μg/ml; derivatives of phenol 31,25–62,5 μg/ml, respectively. Staphylococci were highly resistant to phenol derivatives (31,25–62,5 μg/ml). Gram-negative bacteria exhibited high resistance to quinoline and phenol derivatives (250–500 μg/ml). Summing up the results of determining the antimicrobial action of antiseptics derivatives of menthol, quinoline, it should be emphasized that the drugs have high activity in relation to Staphylococci (0,24–7,8 μg/ml). Phenol derivatives have low bacteriostatic and bactericidal effects on Gram-negative bacteria (125–500 μg/ml), which limits their use in medicine.


Sign in / Sign up

Export Citation Format

Share Document