scholarly journals The Effect of 8-Week Resistance Training and Leucine Supplementation on Protein Synthesis Among Elderly Men With Sarcopenia

2018 ◽  
Vol 3 (2) ◽  
pp. 83-88 ◽  
Author(s):  
Zahra Sadat Pormozafari ◽  
Mohsen Aminaie ◽  
Rohollah Nikooie

Introduction: The aim of present study was to determine the effect of eight weeks resistance training and the supplementation of leucine on protein synthesis in the elderly men with sarcopenia. Methods: A total of 40 elderly men residing in the elderly nursing center were randomly chosen and divided into four groups including Resistance Training and Leucine Supplement (RTLS=10), Resistance Training (RT=10), Leucine Supplement (LS=10), and Control (C=10). Resistance training was performed 8 weeks with intensity training %35-70 of one repetition maximum (1RM) for 20-45 minutes. The group supplement consumed 3 grams of leucine amino acid in every meal. The serum insulin concentration, urine nitrogen, muscle mass, and muscle strength were measured one day before the protocol and 72 hours after the last training session. Ancova was analyzed within and between group changes. Bonferroni post hoc test was used to determine the difference between every two groups. Results: Results showed that Urine nitrogen and muscle mass levels increased significantly after 8 weeks of RT compared to the C group (p<0.05). Serum insulin concentration increased significantly in the RT group compared with the C group (p<0.05). There was a significant increase in muscle strength in the RT and S group compared to the C group (p<0.05). Conclusion: The results of this study revealed that the muscle protein synthesis increased after resistance training in skeletal muscle. This indicates that the rate of sarcopenia reduced as a result of resistance training. In addition, resistance training along with consuming leucine supplement was effective in improving muscle strength.

2009 ◽  
Vol 106 (6) ◽  
pp. 2040-2048 ◽  
Author(s):  
René Koopman ◽  
Luc J. C. van Loon

Aging is accompanied by a progressive loss of skeletal muscle mass and strength, leading to the loss of functional capacity and an increased risk of developing chronic metabolic disease. The age-related loss of skeletal muscle mass is attributed to a disruption in the regulation of skeletal muscle protein turnover, resulting in an imbalance between muscle protein synthesis and degradation. As basal (fasting) muscle protein synthesis rates do not seem to differ substantially between the young and elderly, many research groups have started to focus on the muscle protein synthetic response to the main anabolic stimuli, i.e., food intake and physical activity. Recent studies suggest that the muscle protein synthetic response to food intake is blunted in the elderly. The latter is now believed to represent a key factor responsible for the age-related decline in skeletal muscle mass. Physical activity and/or exercise stimulate postexercise muscle protein accretion in both the young and elderly. However, the latter largely depends on the timed administration of amino acids and/or protein before, during, and/or after exercise. Prolonged resistance type exercise training represents an effective therapeutic strategy to augment skeletal muscle mass and improve functional performance in the elderly. The latter shows that the ability of the muscle protein synthetic machinery to respond to anabolic stimuli is preserved up to very old age. Research is warranted to elucidate the interaction between nutrition, exercise, and the skeletal muscle adaptive response. The latter is needed to define more effective strategies that will maximize the therapeutic benefits of lifestyle intervention in the elderly.


2001 ◽  
Vol 26 (6) ◽  
pp. 588-606 ◽  
Author(s):  
Kevin D. Tipton

Although the causes of sarcopenia are multi-factorial, at least some, such as poor nutrition and inactivity, may be preventable. Changes in muscle mass must be a result of net muscle protein breakdown over that particular time period. Stable isotope methodology has been used to examine the metabolic basis of muscle loss. Net muscle protein breakdown may occur due to a decrease in the basal level of muscle protein synthesis. However, changes of this type would likely be of small magnitude and undetectable by current methodology. Hormonal mediators may also be important, especially in association with forced inactivity. Net muscle protein breakdown may be also attributed to alterations in the periods of net muscle protein synthesis and breakdown each day. Reduced activity, combined with ineffectual nutrient intake, could lead to decreased net muscle protein balance. Chronic resistance exercise training clearly is an effective means of increasing muscle mass and strength in elderly individuals. Although sometimes limited, acute metabolic studies provide valuable information for maintenance of muscle mass with age. Key words: sarcopenia, inactivity, strength training, muscle protein synthesis, muscle hypertrophy


2021 ◽  
Vol 11 (3) ◽  
pp. 14-23
Author(s):  
Carina Sousa Santos ◽  
Eudes Souza Oliveira Júnior ◽  
Marcus James Lopes de Sá ◽  
Elizabethe Adriana Esteves

Proper maintenance of skeletal muscle mass is essential to prevent sarcopenia and ensure health and quality of life as aging progress. The two determinants of muscle protein synthesis are the increased load on skeletal muscle through resistance exercise and protein intake. For an effective result of maintaining or increasing muscle mass, it is relevant to consider the quantitative and adequate intake of protein, and the dietary source of protein since the plant-based protein has differences in comparison to animals that limit its anabolic capacity. Given the increase in vegetarianism and the elderly population, which consumes fewer food sources of animal protein, the importance of understanding how protein of plant-based protein can sustain muscle protein synthesis in the long term when associated with resistance exercise is justified, as well as the possibilities of dietary adequacy in the face of this demand.


2010 ◽  
Vol 70 (1) ◽  
pp. 104-113 ◽  
Author(s):  
René Koopman

Ageing is accompanied by a progressive loss of skeletal muscle mass and strength, leading to the loss of functional capacity and an increased risk for developing chronic metabolic diseases such as diabetes. The age-related loss of skeletal muscle mass results from a chronic disruption in the balance between muscle protein synthesis and degradation. As basal muscle protein synthesis rates are likely not different between healthy young and elderly human subjects, it was proposed that muscles from older adults lack the ability to regulate the protein synthetic response to anabolic stimuli, such as food intake and physical activity. Indeed, the dose–response relationship between myofibrillar protein synthesis and the availability of essential amino acids and/or resistance exercise intensity is shifted down and to the right in elderly human subjects. This so-called ‘anabolic resistance’ represents a key factor responsible for the age-related decline in skeletal muscle mass. Interestingly, long-term resistance exercise training is effective as a therapeutic intervention to augment skeletal muscle mass, and improves functional performance in the elderly. The consumption of different types of proteins, i.e. protein hydrolysates, can have different stimulatory effects on muscle protein synthesis in the elderly, which may be due to their higher rate of digestion and absorption. Current research aims to elucidate the interactions between nutrition, exercise and the skeletal muscle adaptive response that will define more effective strategies to maximise the therapeutic benefits of lifestyle interventions in the elderly.


1999 ◽  
Vol 24 (4) ◽  
pp. 305-316 ◽  
Author(s):  
Michael E. Houston

Most athletes today tend to have a larger muscle mass than their predecessors. Better training and nutrition practices are responsible for much of this difference, but whatever the mechanism, the balance between muscle protein synthesis and breakdown must be in favor of increased muscle protein. Applying new techniques for measuring whole body and muscle protein synthesis to resistance exercise has led to some interesting results. In the recovery period following resistance exercise, both muscle protein synthesis and breakdown are accelerated in the fasted state. Ingestion of carbohydrate or carbohydrate and protein during recovery further increases muscle protein synthesis, due in part to an improved anabolic hormone environment. In addition, the anabolic effect of a resistance training bout may last well beyond 48 hours. Using information obtained from research studies, better training and dietary practices can optimize the benefits from resistance training, Key words: protein synthesis, protein breakdown, anabolic hormones, nutrition, resistance training


Author(s):  
Filipe Rodrigues ◽  
Christophe Domingos ◽  
Diogo Monteiro ◽  
Pedro Morouço

As aging continues to grow in our society, sarcopenia and associated fall risk is considered a public health problem since falling is the third cause of chronic disability. Falls are negatively related to functionality and independence and positively associated with morbidity and mortality. The cost of treatment of secondary injuries related to falls is high. For example, one in ten fall incidents leads to bone fractures and several other comorbidities. As demonstrated by several experimental studies, adopting a more active lifestyle is critical for reducing the number of fall episodes and their consequences. Therefore, it is essential to debate the proven physical exercise methods to reduce falls and fall-related effects. Since muscle mass, muscle strength, bone density, and cartilage function may play significant roles in daily activities, resistance training may positively and significantly affect the elderly. This narrative review aimed to examine current evidence on existing resistance training using resistance machines and bodyweight or low-cost equipment for the elderly and how they are related to falls and fall-related consequences. We provide theoretical links between aging, sarcopenia, and falls linking to resistance training and offer practical suggestions to exercise professionals seeking to promote regular physical exercise to promote quality of life in this population. Exercise programs focusing on strength may significantly influence muscle mass and muscle strength, minimizing functional decline and risk of falling. Resistance training programs should be customized to each elderly according to age, sex, and other fundamental and individual aspects. This narrative review provides evidence to support recommendations for practical resistance training in the elderly related to intensity and volume. A properly designed resistance training program with adequate instructions and technique is safe for the elderly. It should include an individualized approach based on existing equipment (i.e., body weight, resistance machines). Existing literature shows that exercise performance towards 2–3 sets of 1–2 exercises per major muscle group, performing 5–8 repetitions or achieving intensities of 50–80% of 1RM, 2–3 times per week should be recommended, followed by training principles such as periodization and progression. Bearing this in mind, health and exercise professionals should combine efforts focusing on efficient strategies to reduce falls among the elderly and promote higher experiences of well-being at advanced stages in life.


1995 ◽  
Vol 269 (5) ◽  
pp. E820-E826 ◽  
Author(s):  
R. J. Urban ◽  
Y. H. Bodenburg ◽  
C. Gilkison ◽  
J. Foxworth ◽  
A. R. Coggan ◽  
...  

Aging men develop a significant loss of muscle strength that occurs in conjunction with a decline in serum testosterone concentrations. We investigated the effects of testosterone administration to six healthy men [67 +/- 2 (SE) yr] on skeletal muscle protein synthesis, strength, and the intramuscular insulin-like growth factor I (IGF-I) system. Elderly men with serum testosterone concentrations of 480 ng/dl or less were given testosterone injections for 4 wk to produce serum concentrations equal to those of younger men. During testosterone administration muscle strength (isokinetic dynamometer) increased in both right and left hamstring and quadricep muscles as did the fractional synthetic rate of muscle protein (stable-isotope infusion). Ribonuclease protection assays done on total RNA from muscle showed that testosterone administration increased mRNA concentrations of IGF-I and decreased mRNA concentrations of insulin-like growth factor binding protein-4. We conclude that increasing testosterone concentrations in elderly men increases skeletal muscle protein synthesis and strength. This increase may be mediated by stimulation of the intramuscular IGF-I system.


2011 ◽  
Vol 106 (11) ◽  
pp. 1683-1690 ◽  
Author(s):  
Stéphane Walrand ◽  
Aude Zangarelli ◽  
Christelle Guillet ◽  
Jérôme Salles ◽  
Karine Soulier ◽  
...  

Sarcopenia is defined as age-related loss of muscle mass and strength. Energy restriction (ER) delays fibre loss by limiting the accumulated deleterious effects of reactive oxygen species on muscle. However, insufficient protein intake during ER might affect muscle mass and function. We hypothesised that ingestion of fast-digested proteins such as whey protein (WP) improves muscle protein synthesis and muscle strength in aged ER rats. The effect of WP or casein (CAS, slow protein) on muscle mass, protein synthesis and strength was evaluated in 21-month-old rats fed for 5 months either ad libitum (AL) or a 40 % protein and energy-restricted (PER) or 40 % AL-isonitrogenous ER diet. The nitrogen balance was reduced in PER-CAS rats only ( − 48 % v. AL-CAS). WP stimulated muscle protein synthesis rates compared with CAS in all groups (+21,+37 and +34 % in AL, PER and ER conditions, respectively). Muscle strength was higher in ER rats than in AL rats (+23 and +12 % for WP or CAS, respectively). Muscle performance tended to be greater in ER rats fed WP than in ER-CAS rats (P < 0·09). In conclusion, we observed that long-term ER combined with maintained protein intake had a beneficial impact on muscle protein synthesis rate and function during ageing.


1996 ◽  
Vol 151 (3) ◽  
pp. 395-400 ◽  
Author(s):  
R M Palmer ◽  
A Thom ◽  
D J Flint

Abstract Growth and protein accretion were studied in maternal muscle and liver and in foetuses of rats on day 20 of pregnancy. In young rats, weighing 120 g at mating, muscle mass and protein content of three hind-limb muscles, soleus, plantaris and gastrocnemius, increased on average by 7% compared with non-pregnant controls although the rate of muscle protein synthesis was decreased. In mature rats, rates of muscle protein synthesis were also reduced on day 20 of pregnancy but no change in muscle mass was observed. Rates of liver protein synthesis and accretion were increased in the pregnant animals; the effect was larger in the young pregnant rat. Administration of an antibody to rat GH (anti-rGH) for 10 days to young pregnant rats reversed the effect on the same three maternal muscles and resulted in a 9–11% lower muscle mass and protein content, compared with control pregnant animals. In both young and mature dams serum IGF-I concentrations were halved on day 20 of pregnancy, a further small reduction was observed in response to anti-rGH. No significant change in serum insulin or corticosterone levels was observed. Anti-rGH treatment also reduced food intake but foetal weight at 20 days was significantly increased (14%). The effects on maternal muscle were not the result of loss of appetite associated with anti-GH administration as, in rats pair-fed to the intake of the anti-rGH group, maternal muscle and foetal weights were the same as in animals with food available ad libitum. The data suggest that the GH/IGF axis is involved in the partitioning of nutrients between the dam and the foetus. Journal of Endocrinology (1996) 151, 395–400


2018 ◽  
Vol 74 (10) ◽  
pp. 1598-1604 ◽  
Author(s):  
Melissa M Markofski ◽  
Kristofer Jennings ◽  
Kyle L Timmerman ◽  
Jared M Dickinson ◽  
Christopher S Fry ◽  
...  

Abstract Background Essential amino acids (EAA) and aerobic exercise (AE) acutely and independently stimulate skeletal muscle protein anabolism in older adults. Objective In this Phase 1, double-blind, placebo-controlled, randomized clinical trial, we determined if chronic EAA supplementation, AE training, or a combination of the two interventions could improve muscle mass and function by stimulating muscle protein synthesis. Methods We phone-screened 971, enrolled 109, and randomized 50 independent, low-active, nonfrail, and nondiabetic older adults (age 72 ± 1 years). We used a 2 × 2 factorial design. The interventions were: daily nutritional supplementation (15 g EAA or placebo) and physical activity (supervised AE training 3 days/week or monitored habitual activity) for 24 weeks. Muscle strength, physical function, body composition, and muscle protein synthesis were measured before and after the 24-week intervention. Results Forty-five subjects completed the 24-week intervention. VO2peak and walking speed increased (p < .05) in both AE groups, irrespective of supplementation type, but muscle strength increased only in the EAA + AE group (p < .05). EAA supplementation acutely increased (p < .05) muscle protein synthesis from basal both before and after the intervention, with a larger increase in the EAA + AE group after the intervention. Total and regional lean body mass did not change significantly with any intervention. Conclusions In nonfrail, independent, healthy older adults AE training increased walking speed and aerobic fitness, and, when combined with EAA supplementation, it also increased muscle strength and EAA-stimulated muscle protein synthesis. These increases occurred without improvements in muscle mass.


Sign in / Sign up

Export Citation Format

Share Document