Akebiae Caulis Inhibits Oxidative Stress through AMPK Activation

Author(s):  
Eun Hye Jung
Author(s):  
Nanna Skytt Pilmark ◽  
Laura Oberholzer ◽  
Jens Frey Halling ◽  
Jonas M. Kristensen ◽  
Christina Pedersen Bønding ◽  
...  

Metformin and exercise both improve glycemic control, but in vitro studies have indicated that an interaction between metformin and exercise occurs in skeletal muscle, suggesting a blunting effect of metformin on exercise training adaptations. Two studies (a double-blind, parallel-group, randomized clinical trial conducted in 29 glucose-intolerant individuals and a double-blind, cross-over trial conducted in 15 healthy lean males) were included in this paper. In both studies, the effect of acute exercise +/- metformin treatment on different skeletal muscle variables, previously suggested to be involved in a pharmaco-physiological interaction between metformin and exercise, was assessed. Furthermore, in the parallel-group trial, the effect of 12 weeks of exercise training was assessed. Skeletal muscle biopsies were obtained before and after acute exercise and 12 weeks of exercise training, and mitochondrial respiration, oxidative stress and AMPK activation was determined. Metformin did not significantly affect the effects of acute exercise or exercise training on mitochondrial respiration, oxidative stress or AMPK activation, indicating that the response to acute exercise and exercise training adaptations in skeletal muscle is not affected by metformin treatment. Further studies are needed to investigate whether an interaction between metformin and exercise is present in other tissues, e.g. the gut. Trial registration: ClinicalTrials.gov (NCT03316690 and NCT02951260). Novelty bullets • Metformin does not affect exercise-induced alterations in mitochondrial respiratory capacity in human skeletal muscle • Metformin does not affect exercise-induced alterations in systemic levels of oxidative stress nor emission of reactive oxygen species from human skeletal muscle • Metformin does not affect exercise-induced AMPK activation in human skeletal muscle


2016 ◽  
Vol 13 (1) ◽  
Author(s):  
Shahid Ali Shah ◽  
Faiz Ul Amin ◽  
Mehtab Khan ◽  
Muhammad Noman Abid ◽  
Shafiq Ur Rehman ◽  
...  

2017 ◽  
Author(s):  
Danny Christiansen ◽  
Robyn M. Murphy ◽  
Jens Bangsbo ◽  
Christos G. Stathis ◽  
David J. Bishop

AbstractThis study assessed the effect of repeated-ischaemic exercise on the mRNA content of PGC-1α (total, 1α1, and 1α4) and Na+,K+-ATPase (NKA; α1-3, β1-3, and FXYD1) isoforms in human skeletal muscle, and studied some of the potential molecular mechanisms involved. Eight trained men (26 ± 5 y and 57.4 ± 6.3 mL·kg-1·min-1) completed three interval running sessions with (ISC) or without ischaemia (CON), or in hypoxia (HYP, ~3250 m), in a randomised, crossover fashion separated by 1 week. A muscle sample was collected from the dominant leg before (Pre) and after exercise (+0h, +3h) in all sessions to measure the mRNA content of PGC-1α and NKA isoforms, oxidative stress markers (i.e. catalase and HSP70 mRNA), muscle lactate, and phosphorylation of AMPK, ACC, CaMKII, and PLB protein in type I and II fibres. Muscle hypoxia (i.e. deoxygenated haemoglobin) was matched between ISC and HYP, which was higher than in CON (~90% vs. ~70%; p< 0.05). The levels of PGC-1α total, -1α1, −1α4, and FXYD1 mRNA increased in ISC only (p< 0.05). These changes were associated with increases in oxidative stress markers and higher p-ACCSer221/ACC in type I fibres, but were unrelated to muscle hypoxia, lactate, and CaMKII and PLB phosphorylation. These findings highlight that repeated-ischaemic exercise augments the skeletal muscle gene response related to mitochondrial biogenesis and ion transport in trained men. This effect seems attributable, in part, to increased oxidative stress and AMPK activation, whereas it appears unrelated to altered CaMKII signalling, and the muscle hypoxia and lactate accumulation induced by ischaemia.Summary in key pointsWe investigated if ischaemia would augment the exercise-induced mRNA response of PGC-1α and Na+,K+-ATPase (NKA) isoforms (α1-3, β1-3, and FXYD1), and examined whether this effect could be related to oxidative stress and fibre type-dependent AMPK and CaMKII signalling in the skeletal muscle of trained men.Repeated-ischaemic exercise increased the mRNA content of PGC-1α total, −1α1, and-1α4, and of the NKA regulatory subunit FXYD1, whereas exercise in systemic hypoxia or alone was without effect on these genes.These responses to ischaemia were complemented by increased oxidative stress (as assessed by catalase and HSP70 mRNA) and ACC phosphorylation (an indicator of AMPK activation) in type I fibres. However, they were unrelated to CaMKII signalling, muscle hypoxia, and lactate accumulation.Thus, repeated ischaemic exercise augments the muscle gene response associated with mitochondrial biogenesis and ion homeostasis in trained men. This effect seems partly attributable to promoted oxidative stress and AMPK activation.AbbreviationsACCAcetyl-CoA carboxylaseAMPK5’ AMP-activated protein kinase subunitβ2Mβ2 microglobulinCaMKIICa2+-calmodulin-dependent protein kinase isoform IICONcontrol sessionCTcycle thresholdCVcoefficient of variationFXYD1phospholemman isoform 1GAPDHglyceraldehyde 3-phosphate dehydrogenaseGXTgraded exercise testHHbdeoxygenated haemoglobinHSP70heat-shock protein 70HYPrepeated-hypoxic exercise sessionISCrepeated-ischaemic exercise sessionK+potassium ionLTlactate thresholdMHCmyosin heavy chainNa+sodium ionNIRSnear-infrared spectroscopyNKANa+, K+-ATPaseOXPHOSoxidative phosphorylationPGC-1αperoxisome proliferator-activated receptor-gamma coactivator 1 alphaPLBphospholambanROSreactive oxygen speciesSDSsodium dodecyl sulphateTBPTATA-binding proteinVO2maxmaximum oxygen uptake


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Luz Camacho-Castillo ◽  
Bryan V. Phillips-Farfán ◽  
Gabriela Rosas-Mendoza ◽  
Aidee Baires-López ◽  
Danira Toral-Ríos ◽  
...  

AbstractMetabolic disturbances are linked to neurodegenerative diseases such as Alzheimer disease (AD). However, the cellular mechanisms underlying this connection are unclear. We evaluated the role of oxidative stress (OS), during early metabolic syndrome (MetS), on amyloidogenic processes in a MetS rat model induced by sucrose. MetS caused OS damage as indicated by serum and hypothalamus lipid peroxidation and elevated serum catalase activity. Tissue catalase and superoxide dismutase activity were unchanged by MetS, but gene expression of nuclear factor erythroid-derived 2-like 2 (NFE2L2), which up-regulates expression of antioxidant enzymes, was higher. Expression of amyloid-β cleaving enzyme 1 (BACE-1) and amyloid precursor protein (APP), key proteins in the amyloidogenesis pathway, were slightly increased by sucrose-intake in the hippocampus and hypothalamus. Activation and expression of protein kinase B (PKB) and AMP-dependent protein kinase (AMPK), pivotal proteins in metabolism and energy signaling, were similarly affected in the hippocampus and hypothalamus of MetS rats. Brain creatine kinase activity decreased in brain tissues from rats with MetS, mainly due to irreversible oxidation. Chronic metformin administration partially reversed oxidative damage in sucrose-fed animals, together with increased AMPK activation; probably by modulating BACE-1 and NFE2L2. AMPK activation may be considered as a preventive therapy for early MetS and associated neurodegenerative diseases.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Chongxi Fan ◽  
Jianyu Feng ◽  
Chi Tang ◽  
Zhengbin Zhang ◽  
Yingtong Feng ◽  
...  

Abstract Background Bone marrow mesenchymal stem cells (BMSCs) have been used as important cell-based tools for clinical applications. Oxidative stress-induced apoptosis causes a low survival rate after transplantation, and the underlying mechanisms remain unknown. The endoplasmic reticulum (ER) and mitochondria are vital organelles regulated by adenosine monophosphate (AMP)-activated protein kinase (AMPK), especially during oxidative stress injury. Melatonin exerts an antioxidant effect by scavenging free radicals. Here, we aimed to explore whether cytoprotective melatonin relieves ER stress-mediated mitochondrial dysfunction through AMPK in BMSCs after oxidative stress injury. Methods Mouse BMSCs were isolated and exposed to H2O2 in the absence or presence of melatonin. Thereafter, cell damage, oxidative stress levels, mitochondrial function, AMPK activity, ER stress-related proteins, and apoptotic markers were measured. Additionally, the involvement of AMPK and ER stress in the melatonin-mediated protection of BMSCs against H2O2-induced injury was investigated using pharmacologic agonists and inhibitors. Results Melatonin improved cell survival and restored mitochondrial function. Moreover, melatonin intimately regulated the phosphorylation of AMPK and molecules associated with ER stress pathways. AMPK activation and ER stress inhibition following melatonin administration improved the mitochondrial membrane potential (MMP), reduced mitochondria-initiated oxidative damage, and ultimately suppressed apoptotic signaling pathways in BMSCs. Cotreatment with N-acetyl-l-cysteine (NAC) significantly enhanced the antioxidant effect of melatonin. Importantly, pharmacological AMPK activation/ER stress inhibition promoted melatonin-induced cytoprotection, while pharmacological AMPK inactivation/ER stress induction conferred resistance to the effect of melatonin against H2O2 insult. Conclusions Our data also reveal a new, potentially therapeutic mechanism by which melatonin protects BMSCs from oxidative stress-mediated mitochondrial apoptosis, possibly by regulating the AMPK-ER stress pathway.


2011 ◽  
Vol 45 (7) ◽  
pp. 788-795 ◽  
Author(s):  
Arun Prasath Lakshmanan ◽  
Kenichi Watanabe ◽  
Rajarajan A. Thandavarayan ◽  
Flori R. Sari ◽  
Harima Meilei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document