Skeletal muscle adaptations to exercise are not influenced by metformin treatment in humans: secondary analyses of two randomised, clinical trials.

Author(s):  
Nanna Skytt Pilmark ◽  
Laura Oberholzer ◽  
Jens Frey Halling ◽  
Jonas M. Kristensen ◽  
Christina Pedersen Bønding ◽  
...  

Metformin and exercise both improve glycemic control, but in vitro studies have indicated that an interaction between metformin and exercise occurs in skeletal muscle, suggesting a blunting effect of metformin on exercise training adaptations. Two studies (a double-blind, parallel-group, randomized clinical trial conducted in 29 glucose-intolerant individuals and a double-blind, cross-over trial conducted in 15 healthy lean males) were included in this paper. In both studies, the effect of acute exercise +/- metformin treatment on different skeletal muscle variables, previously suggested to be involved in a pharmaco-physiological interaction between metformin and exercise, was assessed. Furthermore, in the parallel-group trial, the effect of 12 weeks of exercise training was assessed. Skeletal muscle biopsies were obtained before and after acute exercise and 12 weeks of exercise training, and mitochondrial respiration, oxidative stress and AMPK activation was determined. Metformin did not significantly affect the effects of acute exercise or exercise training on mitochondrial respiration, oxidative stress or AMPK activation, indicating that the response to acute exercise and exercise training adaptations in skeletal muscle is not affected by metformin treatment. Further studies are needed to investigate whether an interaction between metformin and exercise is present in other tissues, e.g. the gut. Trial registration: ClinicalTrials.gov (NCT03316690 and NCT02951260). Novelty bullets • Metformin does not affect exercise-induced alterations in mitochondrial respiratory capacity in human skeletal muscle • Metformin does not affect exercise-induced alterations in systemic levels of oxidative stress nor emission of reactive oxygen species from human skeletal muscle • Metformin does not affect exercise-induced AMPK activation in human skeletal muscle

2004 ◽  
Vol 287 (2) ◽  
pp. R397-R402 ◽  
Author(s):  
Lotte Jensen ◽  
Henriette Pilegaard ◽  
P. Darrell Neufer ◽  
Ylva Hellsten

The present study investigated the effect of an acute exercise bout on the mRNA response of vascular endothelial growth factor (VEGF) splice variants in untrained and trained human skeletal muscle. Seven habitually active young men performed one-legged knee-extensor exercise training at an intensity corresponding to ∼70% of the maximal workload in an incremental test five times/week for 4 wk. Biopsies were obtained from the vastus lateralis muscle of the trained and untrained leg 40 h after the last training session. The subjects then performed 3 h of two-legged knee-extensor exercise, and biopsies were obtained from both legs after 0, 2, 6, and 24 h of recovery. Real-time PCR was used to examine the expression of VEGF mRNA containing exon 1 and 2 (all VEGF isoforms), exon 6 or exon 7, and VEGF165mRNA. Acute exercise induced an increase ( P < 0.05) in total VEGF mRNA levels as well as VEGF165and VEGF splice variants containing exon 7 at 0, 2, and 6 h of recovery. The increase in VEGF mRNA was higher in the untrained than in the trained leg ( P < 0.05). The results suggest that in human skeletal muscle, acute exercise increases total VEGF mRNA, an increase that appears to be explained mainly by an increase in VEGF165mRNA. Furthermore, 4 wk of training attenuated the exercise-induced response in skeletal muscle VEGF165mRNA.


2013 ◽  
Vol 304 (12) ◽  
pp. E1379-E1390 ◽  
Author(s):  
Brynjulf Mortensen ◽  
Janne R. Hingst ◽  
Nicklas Frederiksen ◽  
Rikke W. W. Hansen ◽  
Caroline S. Christiansen ◽  
...  

Subjects with a low birth weight (LBW) display increased risk of developing type 2 diabetes (T2D). We hypothesized that this is associated with defects in muscle adaptations following acute and regular physical activity, evident by impairments in the exercise-induced activation of AMPK signaling. We investigated 21 LBW and 21 normal birth weight (NBW) subjects during 1 h of acute exercise performed at the same relative workload before and after 12 wk of exercise training. Multiple skeletal muscle biopsies were obtained before and after exercise. Protein levels and phosphorylation status were determined by Western blotting. AMPK activities were measured using activity assays. Protein levels of AMPKα1 and -γ1 were significantly increased, whereas AMPKγ3 levels decreased with training independently of group. The LBW group had higher exercise-induced AMPK Thr172 phosphorylation before training and higher exercise-induced ACC2 Ser221 phosphorylation both before and after training compared with NBW. Despite exercise being performed at the same relative intensity (65% of V̇o2peak), the acute exercise response on AMPK Thr172, ACC2 Ser221, AMPKα2β2γ1, and AMPKα2β2γ3 activities, GS activity, and adenine nucleotides as well as hexokinase II mRNA levels were all reduced after exercise training. Increased exercise-induced muscle AMPK activation and ACC2 Ser221 phosphorylation in LBW subjects may indicate a more sensitive AMPK system in this population. Long-term exercise training may reduce the need for AMPK to control energy turnover during exercise. Thus, the remaining γ3-associated AMPK activation by acute exercise after exercise training might be sufficient to maintain cellular energy balance.


2008 ◽  
Vol 105 (5) ◽  
pp. 1422-1427 ◽  
Author(s):  
G. K. McConell ◽  
A. Manimmanakorn ◽  
R. S. Lee-Young ◽  
B. E. Kemp ◽  
K. C. Linden ◽  
...  

Short-term exercise training in humans attenuates AMP-activated protein kinase (AMPK) activation during subsequent exercise conducted at the same absolute workload. Short-term 5-aminoimidazole-4-carboxyamide- ribonucleoside (AICAR) administration in rats mimics exercise training on skeletal muscle in terms of increasing insulin sensitivity, mitochondrial enzymes, and GLUT4 content, but it is not known whether these adaptations are accompanied by reduced AMPK activation during subsequent exercise. We compared the effect of 10 days of treadmill training (60 min/day) with 10 days of AICAR administration (0.5 mg/g body weight ip) on subsequent AMPK activation during 45 min of treadmill exercise in male Sprague-Dawley rats. Compared with nonexercised control rats, acute exercise significantly ( P < 0.05) increased AMPKα Thr172 phosphorylation (p-AMPKα; 1.6-fold) and ACCβ Ser218 phosphorylation (p-ACCβ; 4.9-fold) in the soleus and p-ACCβ 2.2-fold in the extensor digitorum longus. Ten days of exercise training abolished the increase in soleus p-AMPKα and attenuated the increase in p-ACCβ (nonsignificant 2-fold increase). Ten days of AICAR administration also attenuated the exercise-induced increases in AMPK signaling in the soleus although not as effectively as 10 days of exercise training (nonsignificant 1.3-fold increase in p-AMPKα; significant 3-fold increase in p-ACCβ). The increase in skeletal muscle 2-deoxyglucose uptake during exercise was greater after either 10 days of exercise training or AICAR administration. In conclusion, 10 days of AICAR administration substantially mimics the effect of 10 days training on attenuating skeletal muscle AMPK activation in response to subsequent exercise.


2004 ◽  
Vol 287 (6) ◽  
pp. E1189-E1194 ◽  
Author(s):  
Christian P. Fischer ◽  
Peter Plomgaard ◽  
Anne K. Hansen ◽  
Henriette Pilegaard ◽  
Bengt Saltin ◽  
...  

Contracting skeletal muscle expresses large amounts of IL-6. Because 1) IL-6 mRNA expression in contracting skeletal muscle is enhanced by low muscle glycogen content, and 2) IL-6 increases lipolysis and oxidation of fatty acids, we hypothesized that regular exercise training, associated with increased levels of resting muscle glycogen and enhanced capacity to oxidize fatty acids, would lead to a less-pronounced increase of skeletal muscle IL-6 mRNA in response to acute exercise. Thus, before and after 10 wk of knee extensor endurance training, skeletal muscle IL-6 mRNA expression was determined in young healthy men ( n = 7) in response to 3 h of dynamic knee extensor exercise, using the same relative workload. Maximal power output, time to exhaustion during submaximal exercise, resting muscle glycogen content, and citrate synthase and 3-hydroxyacyl-CoA dehydrogenase enzyme activity were all significantly enhanced by training. IL-6 mRNA expression in resting skeletal muscle did not change in response to training. However, although absolute workload during acute exercise was 44% higher ( P < 0.05) after the training period, skeletal muscle IL-6 mRNA content increased 76-fold ( P < 0.05) in response to exercise before the training period, but only 8-fold ( P < 0.05, relative to rest and pretraining) in response to exercise after training. Furthermore, the exercise-induced increase of plasma IL-6 ( P < 0.05, pre- and posttraining) was not higher after training despite higher absolute work intensity. In conclusion, the magnitude of the exercise-induced IL-6 mRNA expression in contracting human skeletal muscle was markedly reduced by 10 wk of training.


2007 ◽  
Vol 293 (3) ◽  
pp. R1335-R1341 ◽  
Author(s):  
Krista R. Howarth ◽  
Kirsten A. Burgomaster ◽  
Stuart M. Phillips ◽  
Martin J. Gibala

The branched-chain oxoacid dehydrogenase complex (BCOAD) is rate determining for the oxidation of branched-chain amino acids (BCAAs) in skeletal muscle. Exercise training blunts the acute exercise-induced activation of BCOAD (BCOADa) in human skeletal muscle (McKenzie S, Phillips SM, Carter SL, Lowther S, Gibala MJ, Tarnopolsky MA. Am J Physiol Endocrinol Metab 278: E580–E587, 2000); however, the mechanism is unknown. We hypothesized that training would increase the muscle protein content of BCOAD kinase, the enzyme responsible for inactivation of BCOAD by phosphorylation. Twenty subjects [23 ± 1 yr; peak oxygen uptake (V̇o2peak) = 41 ± 2 ml·kg−1·min−1] performed 6 wk of either high-intensity interval or continuous moderate-intensity training on a cycle ergometer ( n = 10/group). Before and after training, subjects performed 60 min of cycling at 65% of pretraining V̇o2peak, and needle biopsy samples (vastus lateralis) were obtained before and immediately after exercise. The effect of training was demonstrated by an increased V̇o2peak, increased citrate synthase maximal activity, and reduced muscle glycogenolysis during exercise, with no difference between groups (main effects, P < 0.05). BCOADa was lower after training (main effect, P < 0.05), and this was associated with a ∼30% increase in BCOAD kinase protein content (main effect, P < 0.05). We conclude that the increased protein content of BCOAD kinase may be involved in the mechanism for reduced BCOADa after exercise training in human skeletal muscle. These data also highlight differences in models used to study the regulation of skeletal muscle BCAA metabolism, since exercise training was previously reported to increase BCOADa during exercise and decrease BCOAD kinase content in rats (Fujii H, Shimomura Y, Murakami T, Nakai N, Sato T, Suzuki M, Harris RA. Biochem Mol Biol Int 44: 1211–1216, 1998).


2009 ◽  
Vol 297 (1) ◽  
pp. E92-E103 ◽  
Author(s):  
Lotte Leick ◽  
Ylva Hellsten ◽  
Joachim Fentz ◽  
Stine S. Lyngby ◽  
Jørgen F. P. Wojtaszewski ◽  
...  

The aim of the present study was to test the hypothesis that PGC-1α is required for exercise-induced VEGF expression in both young and old mice and that AMPK activation leads to increased VEGF expression through a PGC-1α-dependent mechanism. Whole body PGC-1α knockout (KO) and littermate wild-type (WT) mice were submitted to either 1) 5 wk of exercise training, 2) lifelong (from 2 to 13 mo of age) exercise training in activity wheel, 3) a single exercise bout, or 4) 4 wk of daily subcutaneous AICAR or saline injections. In skeletal muscle of PGC-1α KO mice, VEGF protein expression was ∼60–80% lower and the capillary-to-fiber ratio ∼20% lower than in WT. Basal VEGF mRNA expression was similar in WT and PGC-1α KO mice, but acute exercise and AICAR treatment increased the VEGF mRNA content in WT mice only. Exercise training of young mice increased skeletal muscle VEGF protein expression ∼50% in WT mice but with no effect in PGC-1α KO mice. Furthermore, a training-induced prevention of an age-associated decline in VEGF protein content was observed in WT but not in PGC-1α KO muscles. In addition, repeated AICAR treatments increased skeletal muscle VEGF protein expression ∼15% in WT but not in PGC-1α KO mice. This study shows that PGC-1α is essential for exercise-induced upregulation of skeletal muscle VEGF expression and for a training-induced prevention of an age-associated decline in VEGF protein content. Furthermore, the findings suggest an AMPK-mediated regulation of VEGF expression through PGC-1α.


2015 ◽  
Vol 309 (4) ◽  
pp. E388-E397 ◽  
Author(s):  
Adam J. Trewin ◽  
Leonidas S. Lundell ◽  
Ben D. Perry ◽  
Kim Vikhe Patil ◽  
Alexander V. Chibalin ◽  
...  

—Reactive oxygen species (ROS) produced in skeletal muscle may play a role in potentiating the beneficial responses to exercise; however, the effects of exercise-induced ROS on insulin action and protein signaling in humans has not been fully elucidated. Seven healthy, recreationally active participants volunteered for this double-blind, randomized, repeated-measures crossover study. Exercise was undertaken with infusion of saline (CON) or the antioxidant N-acetylcysteine (NAC) to attenuate ROS. Participants performed two 1-h cycling exercise sessions 7–14 days apart, 55 min at 65% V̇o2peak plus 5 min at 85%V̇o2peak, followed 3 h later by a 2-h hyperinsulinemic euglycemic clamp (40 mIU·min−1·m2) to determine insulin sensitivity. Four muscle biopsies were taken on each trial day, at baseline before NAC infusion (BASE), after exercise (EX), after 3-h recovery (REC), and post-insulin clamp (PI). Exercise, ROS, and insulin action on protein phosphorylation were evaluated with immunoblotting. NAC tended to decrease postexercise markers of the ROS/protein carbonylation ratio by −13.5% ( P = 0.08) and increase the GSH/GSSG ratio twofold vs. CON ( P < 0.05). Insulin sensitivity was reduced (−5.9%, P < 0.05) by NAC compared with CON without decreased phosphorylation of Akt or AS160. Whereas p-mTOR was not significantly decreased by NAC after EX or REC, phosphorylation of the downstream protein synthesis target kinase p70S6K was blunted by 48% at PI with NAC compared with CON ( P < 0.05). We conclude that NAC infusion attenuated muscle ROS and postexercise insulin sensitivity independent of Akt signaling. ROS also played a role in normal p70S6K phosphorylation in response to insulin stimulation in human skeletal muscle.


2000 ◽  
Vol 279 (2) ◽  
pp. H772-H778 ◽  
Author(s):  
R. S. Richardson ◽  
H. Wagner ◽  
S. R. D. Mudaliar ◽  
E. Saucedo ◽  
R. Henry ◽  
...  

Angiogenesis is a component of the multifactoral adaptation to exercise training, and vascular endothelial growth factor (VEGF) is involved in extracellular matrix changes and endothelial cell proliferation. However, there is limited evidence supporting the role of VEGF in the exercise training response. Thus we studied mRNA levels of VEGF, using quantitative Northern analysis, in untrained and trained human skeletal muscle at rest and after a single bout of exercise. Single leg knee-extension provided the acute exercise stimulus and the training modality. Four biopsies were collected from the vastus lateralis muscle at rest in the untrained and trained conditions before and after exercise. Training resulted in a 35% increase in muscle oxygen consumption and an 18% increase in number of capillaries per muscle fiber. At rest, VEGF/18S mRNA levels were similar before (0.38 ± 0.04) and after (1.2 ± 0.4) training. When muscle was untrained, acute exercise greatly elevated VEGF/18S mRNA levels (16.9 ± 6.7). The VEGF/18S mRNA response to acute exercise in the trained state was markedly attenuated (5.4 ± 1.3). These data support the concept that VEGF is involved in exercise-induced skeletal muscle angiogenesis and appears to be subject to a negative feedback mechanism as exercise adaptations occur.


2017 ◽  
Author(s):  
Danny Christiansen ◽  
Robyn M. Murphy ◽  
Jens Bangsbo ◽  
Christos G. Stathis ◽  
David J. Bishop

AbstractThis study assessed the effect of repeated-ischaemic exercise on the mRNA content of PGC-1α (total, 1α1, and 1α4) and Na+,K+-ATPase (NKA; α1-3, β1-3, and FXYD1) isoforms in human skeletal muscle, and studied some of the potential molecular mechanisms involved. Eight trained men (26 ± 5 y and 57.4 ± 6.3 mL·kg-1·min-1) completed three interval running sessions with (ISC) or without ischaemia (CON), or in hypoxia (HYP, ~3250 m), in a randomised, crossover fashion separated by 1 week. A muscle sample was collected from the dominant leg before (Pre) and after exercise (+0h, +3h) in all sessions to measure the mRNA content of PGC-1α and NKA isoforms, oxidative stress markers (i.e. catalase and HSP70 mRNA), muscle lactate, and phosphorylation of AMPK, ACC, CaMKII, and PLB protein in type I and II fibres. Muscle hypoxia (i.e. deoxygenated haemoglobin) was matched between ISC and HYP, which was higher than in CON (~90% vs. ~70%; p< 0.05). The levels of PGC-1α total, -1α1, −1α4, and FXYD1 mRNA increased in ISC only (p< 0.05). These changes were associated with increases in oxidative stress markers and higher p-ACCSer221/ACC in type I fibres, but were unrelated to muscle hypoxia, lactate, and CaMKII and PLB phosphorylation. These findings highlight that repeated-ischaemic exercise augments the skeletal muscle gene response related to mitochondrial biogenesis and ion transport in trained men. This effect seems attributable, in part, to increased oxidative stress and AMPK activation, whereas it appears unrelated to altered CaMKII signalling, and the muscle hypoxia and lactate accumulation induced by ischaemia.Summary in key pointsWe investigated if ischaemia would augment the exercise-induced mRNA response of PGC-1α and Na+,K+-ATPase (NKA) isoforms (α1-3, β1-3, and FXYD1), and examined whether this effect could be related to oxidative stress and fibre type-dependent AMPK and CaMKII signalling in the skeletal muscle of trained men.Repeated-ischaemic exercise increased the mRNA content of PGC-1α total, −1α1, and-1α4, and of the NKA regulatory subunit FXYD1, whereas exercise in systemic hypoxia or alone was without effect on these genes.These responses to ischaemia were complemented by increased oxidative stress (as assessed by catalase and HSP70 mRNA) and ACC phosphorylation (an indicator of AMPK activation) in type I fibres. However, they were unrelated to CaMKII signalling, muscle hypoxia, and lactate accumulation.Thus, repeated ischaemic exercise augments the muscle gene response associated with mitochondrial biogenesis and ion homeostasis in trained men. This effect seems partly attributable to promoted oxidative stress and AMPK activation.AbbreviationsACCAcetyl-CoA carboxylaseAMPK5’ AMP-activated protein kinase subunitβ2Mβ2 microglobulinCaMKIICa2+-calmodulin-dependent protein kinase isoform IICONcontrol sessionCTcycle thresholdCVcoefficient of variationFXYD1phospholemman isoform 1GAPDHglyceraldehyde 3-phosphate dehydrogenaseGXTgraded exercise testHHbdeoxygenated haemoglobinHSP70heat-shock protein 70HYPrepeated-hypoxic exercise sessionISCrepeated-ischaemic exercise sessionK+potassium ionLTlactate thresholdMHCmyosin heavy chainNa+sodium ionNIRSnear-infrared spectroscopyNKANa+, K+-ATPaseOXPHOSoxidative phosphorylationPGC-1αperoxisome proliferator-activated receptor-gamma coactivator 1 alphaPLBphospholambanROSreactive oxygen speciesSDSsodium dodecyl sulphateTBPTATA-binding proteinVO2maxmaximum oxygen uptake


2021 ◽  
Vol 2021 ◽  
pp. 1-5
Author(s):  
Fan Wang ◽  
Xin Wang ◽  
Yiping Liu ◽  
Zhenghong Zhang

Oxidative stress is the imbalance of the redox system in the body, which produces excessive reactive oxygen species, leads to multiple cellular damages, and closely relates to some pathological conditions, such as insulin resistance and inflammation. Meanwhile, exercise as an external stimulus of oxidative stress causes the changes of pathophysiological functions in the tissues and organs, including skeletal muscle. Exercise-induced oxidative stress is considered to have different effects on the structure and function of skeletal muscle. Long-term regular or moderate exercise-induced oxidative stress is closely related to the formation of muscle adaptation, while excessive free radicals produced by strenuous or acute exercise can cause muscle oxidative stress fatigue and damage, which impacts exercise capacity and damages the body’s health. The present review systematically summarizes the relationship between exercise-induced oxidative stress and the adaptions, damage, and fatigue in skeletal muscle, in order to clarify the effects of exercise-induced oxidative stress on the pathophysiological functions of skeletal muscle.


Sign in / Sign up

Export Citation Format

Share Document