The Association Between Visual Assessment of Quality of Movement and Three-Dimensional Analysis of Pelvis, Hip, and Knee Kinematics During a Lateral Step Down Test

2016 ◽  
Vol 30 (11) ◽  
pp. 3204-3211 ◽  
Author(s):  
Alon Rabin ◽  
Sigal Portnoy ◽  
Zvi Kozol
2014 ◽  
Vol 49 (5) ◽  
pp. 617-623 ◽  
Author(s):  
Alon Rabin ◽  
Zvi Kozol ◽  
Elad Spitzer ◽  
Aharon Finestone

Context: Lower extremity movement patterns have been implicated as a risk factor for various knee disorders. Ankle-dorsiflexion (DF) range of motion (ROM) has previously been associated with a faulty movement pattern among healthy female participants. Objective: To determine the association between ankle DF ROM and the quality of lower extremity movement during the lateral step-down test among healthy male participants. Design: Cross-sectional study. Setting: Training facility of the Israel Defense Forces. Patients or Other Participants: Fifty-five healthy male Israeli military recruits (age = 19.7 ± 1.1 years, height = 175.4 ± 6.4 cm, mass = 72.0 ± 7.6 kg). Intervention(s): Dorsiflexion ROM was measured in weight-bearing and non–weight-bearing conditions using a fluid-filled inclinometer and a universal goniometer, respectively. Lower extremity movement pattern was assessed visually using the lateral step-down test and classified categorically as good or moderate. All measurements were performed bilaterally. Main Outcome Measure(s): Weight-bearing and non–weight-bearing DF ROM were more limited among participants with moderate quality of movement than in those with good quality of movement on the dominant side (P = .01 and P = .02 for weight-bearing and non–weight-bearing DF, respectively). Non–weight-bearing DF demonstrated a trend toward a decreased range among participants with moderate compared with participants with good quality of movement on the nondominant side (P = .03 [adjusted P = .025]). Weight-bearing DF was not different between participants with good and moderate movement patterns on the nondominant side (P = .10). Weight-bearing and non–weight-bearing ankle DF ROM correlated significantly with the quality of movement on both sides (P < .01 and P < .05 on the dominant and nondominant side, respectively). Conclusions: Ankle DF ROM was associated with quality of movement among healthy male participants. The association seemed weaker in males than in females.


2019 ◽  
Vol 23 (4) ◽  
pp. 835-843
Author(s):  
Rômulo Lemos e Silva ◽  
Yago Tavares Pinheiro ◽  
Caio Alano de Almeida Lins ◽  
Rodrigo Ribeiro de Oliveira ◽  
Rodrigo Scattone Silva

10.29007/lj2j ◽  
2020 ◽  
Author(s):  
David Leandro Dejtiar ◽  
Laura Bartsoen ◽  
Mariska Wesseling ◽  
Roel Wirix-Speetjens ◽  
Jos Vander Sloten ◽  
...  

Total knee arthroplasty (TKA) is a common procedure that has become the standard of treatment for severe cases of knee osteoarthritis. Biomechanics and quality of movement similar to healthy were found to improve patient-reported outcomes.In this study, an evaluated musculoskeletal model predicted ligament, contact and muscle forces together with secondary tibiofemoral kinematics. An artificial neural network applied to the musculoskeletal model searched for the optimal implant position in a given range that will minimize the root-mean-square-error (RMSE) between post- TKA and native experimental tibiofemoral kinematics during a squat.We found that, using a cruciate-retaining implant, native kinematics could be accurately reproduced (average RMSE 1.47 mm (± 0.89 mm) for translations and 2.89° (± 2.83°) for rotations between native and optimal TKA alignment). The required implant positions changes maximally 2.96 mm and 2.40o. This suggests that when using pre- operative planning, off-the-shelf CR implants allow for reproducing native knee kinematics post-operatively.


Author(s):  
David M. Werner ◽  
Ryne W. Davis ◽  
Andrew Hinton ◽  
Samantha K. Price ◽  
Jimmy L. Rowland ◽  
...  

Author(s):  
S. Naka ◽  
R. Penelle ◽  
R. Valle

The in situ experimentation technique in HVEM seems to be particularly suitable to clarify the processes involved in recrystallization. The material under investigation was unidirectionally cold-rolled titanium of commercial purity. The problem was approached in two different ways. The three-dimensional analysis of textures was used to describe the texture evolution during the primary recrystallization. Observations of bulk-annealed specimens or thin foils annealed in the microscope were also made in order to provide information concerning the mechanisms involved in the formation of new grains. In contrast to the already published work on titanium, this investigation takes into consideration different values of the cold-work ratio, the temperature and the annealing time.Two different models are commonly used to explain the recrystallization textures i.e. the selective grain growth model (Beck) or the oriented nucleation model (Burgers). The three-dimensional analysis of both the rolling and recrystallization textures was performed to identify the mechanismsl involved in the recrystallization of titanium.


Author(s):  
S. Khadpe ◽  
R. Faryniak

The Scanning Electron Microscope (SEM) is an important tool in Thick Film Hybrid Microcircuits Manufacturing because of its large depth of focus and three dimensional capability. This paper discusses some of the important areas in which the SEM is used to monitor process control and component failure modes during the various stages of manufacture of a typical hybrid microcircuit.Figure 1 shows a thick film hybrid microcircuit used in a Motorola Paging Receiver. The circuit consists of thick film resistors and conductors screened and fired on a ceramic (aluminum oxide) substrate. Two integrated circuit dice are bonded to the conductors by means of conductive epoxy and electrical connections from each integrated circuit to the substrate are made by ultrasonically bonding 1 mil aluminum wires from the die pads to appropriate conductor pads on the substrate. In addition to the integrated circuits and the resistors, the circuit includes seven chip capacitors soldered onto the substrate. Some of the important considerations involved in the selection and reliability aspects of the hybrid circuit components are: (a) the quality of the substrate; (b) the surface structure of the thick film conductors; (c) the metallization characteristics of the integrated circuit; and (d) the quality of the wire bond interconnections.


Author(s):  
B. Carragher ◽  
M. Whittaker

Techniques for three-dimensional reconstruction of macromolecular complexes from electron micrographs have been successfully used for many years. These include methods which take advantage of the natural symmetry properties of the structure (for example helical or icosahedral) as well as those that use single axis or other tilting geometries to reconstruct from a set of projection images. These techniques have traditionally relied on a very experienced operator to manually perform the often numerous and time consuming steps required to obtain the final reconstruction. While the guidance and oversight of an experienced and critical operator will always be an essential component of these techniques, recent advances in computer technology, microprocessor controlled microscopes and the availability of high quality CCD cameras have provided the means to automate many of the individual steps.During the acquisition of data automation provides benefits not only in terms of convenience and time saving but also in circumstances where manual procedures limit the quality of the final reconstruction.


Sign in / Sign up

Export Citation Format

Share Document