Validation of Heart Rate Monitor-Based Predictions of Oxygen Uptake and Energy Expenditure

2009 ◽  
Vol 23 (5) ◽  
pp. 1489-1495 ◽  
Author(s):  
Paul G Montgomery ◽  
Daniel J Green ◽  
Naroa Etxebarria ◽  
David B Pyne ◽  
Philo U Saunders ◽  
...  
2014 ◽  
Vol 39 (3) ◽  
pp. 324-328 ◽  
Author(s):  
Raffaele Milia ◽  
Silvana Roberto ◽  
Marco Pinna ◽  
Girolamo Palazzolo ◽  
Irene Sanna ◽  
...  

Fencing is an Olympic sport in which athletes fight one against one using bladed weapons. Contests consist of three 3-min bouts, with rest intervals of 1 min between them. No studies investigating oxygen uptake and energetic demand during fencing competitions exist, thus energetic expenditure and demand in this sport remain speculative. The aim of this study was to understand the physiological capacities underlying fencing performance. Aerobic energy expenditure and the recruitment of lactic anaerobic metabolism were determined in 15 athletes (2 females and 13 males) during a simulation of fencing by using a portable gas analyzer (MedGraphics VO2000), which was able to provide data on oxygen uptake, carbon dioxide production and heart rate. Blood lactate was assessed by means of a portable lactate analyzer. Average group energetic expenditure during the simulation was (mean ± SD) 10.24 ± 0.65 kcal·min−1, corresponding to 8.6 ± 0.54 METs. Oxygen uptakeand heart rate were always below the level of anaerobic threshold previously assessed during the preliminary incremental test, while blood lactate reached its maximum value of 6.9 ± 2.1 mmol·L−1 during the final recovery minute between rounds. Present data suggest that physical demand in fencing is moderate for skilled fencers and that both aerobic energy metabolism and anaerobic lactic energy sources are moderately recruited. This should be considered by coaches when preparing training programs for athletes.


2012 ◽  
Vol 8 (1) ◽  
pp. 41-46 ◽  
Author(s):  
H.C. Manso Filho ◽  
H.E.C.C.C. Manso ◽  
K.H. McKeever ◽  
S.R.R. Duarte ◽  
J.M.G. Abreu

In order to understand how gaited horses use their energy during exercise, a standardised field gaited test (SFGT) was developed to assess energy expenditure of four beat gaited horses independently of size, sex or breed. This work aimed at developing such an SFGT, using as main measurement parameter the heart rate (HR) of horses during the SFGT performance. Thirty-one four beat gaited horses were evaluated and divided into two groups: FIT (conditioned) and UNFIT (not conditioned). Horses were submitted to the SFGT and their heart rates were measured with a heart rate monitor as follows: right after being mounted, at the beginning of pre-test (HRSADDLE); at 5, 10, 15, 20, 25 and 30 minutes of four beat gait dislocation; and at 15 minutes after the recovery period (T+15). Maximum HR (HRMAX); HR percentage over 150 beats per minute (HR%≯150), HR percentage over 170 beats per minute (HR%≯170), and average HR during the four beat gait stage (HRM@M) of SFGT were calculated. Results were analysed by ANOVA for repeated measures. Where significant differences were observed, ‘T’ test was performed and significance was set at 5%. The FIT group presented HRMAX, HR+15, HRM@M, HR%≯150 and HR%≯170 rates lower (P<0.05) than the UNFIT group. It was noted that there was a negative correlation between fitness and HRMAX (R=−0.67; P<0.001) and a positive correlation between HRMAX and HR+15 (R=0.60; P<0.001) when comparing the FIT to the UNFIT horses. In conclusion, during the SFGT, the FIT group was more efficient in energy expenditure than the UNFIT group, based on the results observed for the significantly lower HRs during the SFGT. It is relevant to note that the SFGT developed and used in this research, which was easily reproduced and accurate, was able to detect and confirm important adaptations related to fitness in the athletic horse.


2012 ◽  
Vol 22 (2) ◽  
pp. 117-130 ◽  
Author(s):  
Steven Gastinger ◽  
Guillaume Nicolas ◽  
Anthony Sorel ◽  
Hamid Sefati ◽  
Jacques Prioux

The aim of this article was to compare 2 portable devices (a heart-rate monitor and an electromagnetic-coil system) that evaluate 2 different physiological parameters—heart rate (HR) and ventilation (VE)—with the objective of estimating energy expenditure (EE). The authors set out to prove that VE is a more pertinent setting than HR to estimate EE during light to moderate activities (sitting and standing at rest and walking at 4, 5, and 6 km/hr). Eleven healthy men were recruited to take part in this study (27.6 ± 5.4 yr, 73.7 ± 9.7 kg). The authors determined the relationships between HR and EE and between VE and EE during light to moderate activities. They compared EE measured by indirect calorimetry (EEREF) with EE estimated by HR monitor (EEHR) and EE estimated by electromagnetic coils (EEMAG) in upright sitting and standing positions and during walking exercises. They compared EEREF with EEHR and EEMAG. The results showed no significant difference between the values of EEREF and EEMAG. However, they showed several significant differences between the values of EEREF and EEHR (for standing at rest and walking at 5 and 6 km/hr). These results showed that the electromagnetic-coil system seems to be more accurate than the HR monitor to estimate EE at rest and during exercise. Taking into consideration these results, it would be interesting to associate the parameters VE and HR to estimate EE. Furthermore, a new version of the electromagnetic-coil device was recently developed and provides the possibility to perform measurement under daily life conditions.


Author(s):  
Sora Baek ◽  
Yuncheol Ha

Abstract Background Nordic walking (NW) requires more energy compared with conventional walking (W). However, the metabolic equation for NW has not been reported. Therefore, this study aimed to characterize responses in oxygen uptake, minute ventilation, heart rate, systolic blood pressure, and surface electromyography of the upper and lower limb muscles during NW and W and develop a metabolic equation for energy expenditure (E, mL·kg− 1·min− 1) of NW. Methods This study was performed in a randomized, controlled, crossover design to test the energy expenditure during NW and W. Fifteen healthy young men were enrolled (aged 23.7 ± 3.0 years). All participants performed two randomly ordered walking tests (NW and W) on a treadmill at a predetermined stepwise incremental walking speed (3–5 km·h− 1) and grade (0–7%). The oxygen uptake, minute ventilation, heart rate, systolic blood pressure, and surface electromyography signals of the three upper limb muscles and three lower limb muscles in their right body were recorded and compared between NW and W using paired-t test. Multiple linear regression analysis was used to draw estimation of E during W and NW. Results Oxygen uptake (+ 15.8%), minute ventilation (+ 17.0%), heart rate (+ 8.4%), and systolic blood pressure (+ 7.7%) were higher in NW than in W (P < .05). NW resulted in increased muscle activity in all of the upper limb muscles (P < .05). In the lower limb, surface electromyography activities in two of the three lower limb muscles were increased in NW than in W only during level walking (P < .05). Energy expenditure during W and NW was estimated as follows: ENW = 6.1 + 0.09 × speed + 1.19 × speed × grade and EW = 4.4 + 0.09 × speed + 1.20 × speed × grade. Conclusion NW showed higher work intensity than W, with an oxygen consumption difference of 1.7 mL·kg− 1·min− 1. The coefficients were not different between the two walking methods. NW involved more muscles of the upper body than W.


2006 ◽  
Vol 38 (Supplement) ◽  
pp. S463
Author(s):  
Mia K. Newlin ◽  
Jonathan E. Wingo ◽  
Matthew S. Ganio ◽  
Jennifer L. Trilk ◽  
Kirk J. Cureton

2020 ◽  
Author(s):  
Sora Baek ◽  
Yuncheol Ha

Abstract Background: Nordic walking (NW) requires more energy compared with conventional walking (W). However, the metabolic equation for NW has not been reported. Therefore, this study aimed to characterize responses in oxygen uptake, minute ventilation, heart rate, systolic blood pressure, and surface electromyography of the upper and lower limb muscles during NW and W and develop a metabolic equation for energy expenditure (E, mL·kg-1·min-1) of NW.Methods: This study was performed in a randomized, controlled, crossover design to test the energy expenditure during NW and W. Fifteen healthy young men were enrolled (aged 23.7 ± 3.0 years). All participants performed two randomly ordered walking tests (NW and W) on a treadmill at a predetermined stepwise incremental walking speed (3–5 km·h-1) and grade (0%–7%). The oxygen uptake, minute ventilation, heart rate, systolic blood pressure, and surface electromyography signals of the three upper limb muscles and three lower limb muscles in their right body were recorded and compared between NW and W using paired-t test. Multiple linear regression analysis was used to draw estimation of E during W and NW.Results: Oxygen uptake (+15.8%), minute ventilation (+17.0%), heart rate (+8.4%), and systolic blood pressure (+7.7%) were higher in NW than in W (P<.05). NW resulted in increased muscle activity in all of the upper limb muscles (P<.05). In the lower limb, surface electromyography activities in two of the three lower limb muscles were increased in NW than in W only during level walking (P<.05). Energy expenditure during W and NW was estimated as follows: ENW = 6.1 + 0.09 × speed + 1.19 × speed × grade and EW = 4.4 + 0.09 × speed + 1.20 × speed × grade.Conclusion: NW showed higher work intensity than W, with an oxygen consumption difference of 1.7 mL·kg-1·min-1. The coefficients were not different between the two walking methods. NW involved more muscles of the upper body than W.


2021 ◽  
Author(s):  
Sora Baek ◽  
Yuncheol Ha

Abstract Background: Nordic walking (NW) requires more energy compared with conventional walking (W). However, the metabolic equation for NW has not been reported. Therefore, this study aimed to characterize responses in oxygen uptake, minute ventilation, heart rate, systolic blood pressure, and surface electromyography of the upper and lower limb muscles during NW and W and develop a metabolic equation for energy expenditure (E, mL·kg-1·min-1) of NW.Methods: This study was performed in a randomized, controlled, crossover design to test the energy expenditure during NW and W. Fifteen healthy young men were enrolled (aged 23.7 ± 3.0 years). All participants performed two randomly ordered walking tests (NW and W) on a treadmill at a predetermined stepwise incremental walking speed (3–5 km·h-1) and grade (0%–7%). The oxygen uptake, minute ventilation, heart rate, systolic blood pressure, and surface electromyography signals of the three upper limb muscles and three lower limb muscles in their right body were recorded and compared between NW and W using paired-t test. Multiple linear regression analysis was used to draw estimation of E during W and NW.Results: Oxygen uptake (+15.8%), minute ventilation (+17.0%), heart rate (+8.4%), and systolic blood pressure (+7.7%) were higher in NW than in W (P<.05). NW resulted in increased muscle activity in all of the upper limb muscles (P<.05). In the lower limb, surface electromyography activities in two of the three lower limb muscles were increased in NW than in W only during level walking (P<.05). Energy expenditure during W and NW was estimated as follows: ENW = 6.1 + 0.09 × speed + 1.19 × speed × grade and EW = 4.4 + 0.09 × speed + 1.20 × speed × grade.Conclusion: NW showed higher work intensity than W, with an oxygen consumption difference of 1.7 mL·kg-1·min-1. The coefficients were not different between the two walking methods. NW involved more muscles of the upper body than W.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Chin-Shan Ho ◽  
Chun-Hao Chang ◽  
Yi-Ju Hsu ◽  
Yu-Tsai Tu ◽  
Fang Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document