Protein profile and seeds storage proteins changes in wheat genotypes under control and drought stress conditions

2014 ◽  
Vol 1 (1) ◽  
2018 ◽  
Vol 9 (24) ◽  
pp. 119-136
Author(s):  
Mohammadreza Bihamta ◽  
Mehdi Shirkavand ◽  
Javad Hasanpour ◽  
Amin Afzalifar ◽  
◽  
...  

2019 ◽  
Vol 34 (3) ◽  
pp. 314-334
Author(s):  
Zamalotshwa Thungo ◽  
Hussein Shimelis ◽  
Alfred Odindo ◽  
Jacob Mashilo

2018 ◽  
Vol 9 (24) ◽  
pp. 10-21
Author(s):  
Seyed Javad Talebzadeh1 ◽  
Hashem Hadi ◽  
Reza Amirnia ◽  
Mehdi Tajbakhsh ◽  
Mohammad Rezaei Morad Ali ◽  
...  

2019 ◽  
Vol 56 (2) ◽  
pp. 161-170 ◽  
Author(s):  
Reza Mohammadi

AbstractBreeding for drought tolerance using novel genetic resources possessing relevant agronomic and adaptive traits is a key to enhance productivity and food security in wheat growing areas. Herein, the main objectives were (i) to use a combination scoring index (multiple scoring index, (MSI)) for selection of durum wheat genotypes under different drought stress intensities (SIs) (ii) to examine repeatability of the scoring index through bootstrap re-sample method, and (iii) to study the relationship of MSI with some drought-adaptive traits. Sixteen durum wheat genotypes were grown under rainfed and irrigated conditions during three cropping seasons (2012–2015), resulting in different drought SIs, that is, mild (SI < 0.3), moderate (0.3 < SI < 0.6), and severe (SI > 0.6). The average grain yields among test environments varied between 708 and 3631 kg ha−1. The validation of the methodology of scoring index was confirmed by the correlation coefficients between score indices and their original values across different drought SIs. According to MSI, the genotypes G16, G1, and G3 had the best combination of high productivity and high resilience to mild, moderate, and severe drought stress conditions, respectively. These results indicated that the ranking of genotypes varied among different drought SIs, which support the high potential of durum wheat for adaptation to different drought stress conditions. Based on the bootstrap samples, non-repeatable correlations were observed between the estimates of MSI from different levels of stress. The significant correlation between MSI with grain yield and 1000-kernel weight (TKW) under severe drought condition provides evidence that MSI ultimately be considered as a tool for effective selection of drought-tolerant genotypes. The MSI selected genotypes based on high productivity and resilience, to each level of drought SI, and favorable adaptive traits useful for breeding.


Author(s):  
N Balqees ◽  
Q Ali ◽  
A Malik

Cereals grains have feed mankind since their domestication thousands of years ago and remained the most important source of calories for the majority of human population. Wheat (Triticum aestivum L.) and Maize (Zea mays L.) are used as staple food for more than 50% of world population. For evaluation of wheat and maize genotype under biogas wastewater, sewage water and drought stress, an experiment was conducted in the greenhouse of Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan. The treatments of biogas wastewater, sewage water and drought for maize and wheat genotypes were kept as following T1: control (normal irrigation condition) T2 (sewage water 100ml), T3 (biogas wastewater 100ml), T4 (drought 75% (25ml water)), T5 (biogas 150ml) and T6 (sewage water 150ml) respectively). It was observed from the results that the performance of maize and wheat genotypes were highly variable under biogas wastewater, sewage water and drought treatments. The treatment of sewage water (150ml) and drought (75%) were found as the higher toxic treatments of maize and wheat which were predicted as they may cause to decrease in the photosynthetic rate, productivity and growth of plants. The significant correlation was found between root length and shoot length for both of the genotypes. It was found from the results that maize genotype (Raka-poshi) performed better under most of the stress treatments as compared with wheat genotype (Galaxy-2013) while the higher genetic advance and heritability were reported for maize genotype which revealed that the maize may used to grow for higher grain production under biogas wastewater, sewage water and drought stress conditions.


2019 ◽  
Vol 7 ◽  
pp. 40-52
Author(s):  
Jawed Aslam Khyber ◽  
Faiza Soomro ◽  
Wahid Dino Sipio ◽  
Abdul Wahid Baloch ◽  
Jay Kumar Soothar ◽  
...  

The current study was planned to identify drought tolerant bread wheat genotypes based on physiological and yield traits. In this context, a set of 12 genotypes (Sarsabz, NIA-Sundar, NIA-Amber, Sassui, Khirman, Marvi-2000, NIA-Sarang, Kiran-95, NIA-Sunheri, Bhittai, Bathoor-08 and Tatara) were evaluated under normal and water stress conditions. Mean squares from analysis of variance exhibited that genotypes, treatments and genotype x treatment interaction showed significant differences (P<0.05) for majority of the studied traits, indicating that there is significant variations are existed for physio-yield traits; therefore these genotypes may be preferred for further breeding programs in respect to drought stress. Regarding reduction percentage of genotypes under drought stress against normal water conditions, the minimum reduction was observed in Bathoor-08 for spike length and flag leaf area, Kiran-95 for grain yield plant, NIA-Sundar for seed index, Marvi-2000 for relative water content, Sarsabz for grains spike, whereas maximum but desirable reduction of stomatal dimension and density was displayed by Sarsabz and Tatara under water stress conditions, respectively. On the basis of drought tolerant indices, the genotypes Kiran-95, NIA-Sundar and Sarsabz showed lower values for tolerance index (TOL), trait stability index (TSI) and stress susceptibility (SSI), nevertheless it is believed that lower values of these indices show the less reduction in yield and its related traits due to water stress conditions hence can be tagged as tolerant genotypes for drought. Correlation results revealed that MP, SSI, TOL and TSI indices were correlated with grain yield under two conditions and they can be the appropriate indices for screening wheat genotypes.


2020 ◽  
Vol 12 (34) ◽  
pp. 115-129
Author(s):  
Davood Daei alhag ◽  
Varahram Rashidi ◽  
Saeed Aharizad ◽  
Farhad Farahvash ◽  
Bahram Mirshekari ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document