Studies on the Impact of cadmium on Growth, Yield Attributes, Yield and Biochemistry of Mung Bean (Vigna radiata L Wilczek) Under Natural Field Condition, Burdwan, West Bengal

2016 ◽  
Vol 14 (1) ◽  
2021 ◽  
Author(s):  
Eman G. Sayed ◽  
Mona A. Ouis

Abstract A new glass fertilizer (GF) system of main composition 60P2O5.30K2O.3.5ZnO. 3.5MnO.3Fe2O3 was developed in response to the needs of pea plants with bio-fertilizers (Rhizobium leguminosarum. Bv.vicieae, Bacillus megaterium var phosphaticum, Bacillus circulans).GF was prepared by the traditional melt quenching technique at 1150°C. Characterization of prepared system was done using FTIR spectra before and after immersion in a simulated actual agriculture medium like 2% citric acid and distilled water. During two winter seasons, two successful field experiments were conducted at Cairo University's Eastern Farm to determine the impact of chemical, glass, and bio-fertilizers on plant growth, yield attributes, and seed quality of pea plant. Control treatment were without any addition of recommended chemical fertilizers and other treatments were full dose of recommended chemical fertilizers (100%RDF), glass fertilizers at rate 60 kg fed− 1, Glass fertilizers at rate30 kg fed− 1, 50% RDF ,100%RDF + bio-fertilizers, Glass fertilizers at rate 60 kg fed− 1 + bio-fertilizers, glass fertilizers at rate 30 kg fed− 1+ bio-fertilizers, 50%RDF + bio-fertilizers. Plots received 60 kg fed− 1 glass fertilizers + bio-fertilizers show the highest significant increment in plant growth, number and weight of pods plant− 1, number of grain pods− 1, grain yield, biological yield, P%, k% in pea leaves and quality of pea seeds compared with plots without any addition (control) in both seasons.


2014 ◽  
Vol 11 (1) ◽  
pp. 133-147 ◽  
Author(s):  
B De ◽  
S Bandyopadhyay

The climate of the terai region of West Bengal, India in general, is subtropical par humid to tropical with light textured acid soil with the problems like low moisture retention, low water use efficiency, leaching of bases, soil erosion, limited availability of multiple plant nutrients and restricted activity of beneficial soil micro-organisms. To combat these soil health related problems and to improve the overall productivity of North Bengal, a comparison between the conventional and conservation tillage was taken up and the immediate results were measured in terms of growth, yield attributes and yield. In the first two years of experimentation, though different growth attributes, grain yield, stover yield, and different yield attributing characters such as kernel rows cob-1, number of kernels row-1, 100 seed weight (g), number of seeds cob-1, girth of cob, length of cob and number of effective cob plant-1 were higher in conventional tillage as compared to conservation tillage but in terms of soil heath characteristics, conservation tillage had a meaningful remark from the initial years towards the future food security. Mulching @ 4 t ha-1 was found to have performed better than unmulched treatments. Application of 75% recommended dose of fertilizer + Vermicompost @ 10 t ha-1 resulted in better growth and yield attributes which directly influenced to have higher grain and stover yield. DOI: http://dx.doi.org/10.3329/sja.v11i1.18390 SAARC J. Agri., 11(1): 133-147 (2013)


2014 ◽  
Vol 47 (1) ◽  
pp. 107-114
Author(s):  
Z. Fooladivanda ◽  
M. Hassanzadehdelouei ◽  
N. Zarifinia

ABSTRACT Water stress is known as the major threat to reduced growth and yield of plants in arid and semi-arid regions. Potassium is one of the indicators of plant responses to water stress. To evaluate the impact of water stress and levels of potassium on yield and yield components of two varieties of mung bean (Vigna radiata) (promising lines VC6172 and Indian), an experiment in the form of split factorial, based on randomized complete block design with three replicates was conducted in 2011, at the research farm of Safi-Abad Dezfool, Iran (latitude 32°16’ N, longitude 48°26’ E and altitude 82.9 m above sea level) .Water stress in three levels: irrigation at 120 (no stress), 180 (moderate stress) and 240 (severe stress) mm evaporation from pan, were allocated to the main plots and potassium fertilizer at three levels (0, 90, 180 kg /ha) and two varieties of mung bean (promising line VC6172 and Indian) were allotted to the sub-plots. Results showed that water stress and potassium fertilizer significantly affect all traits. The highest grain yield (2093 kg /ha) was obtained from no stress treatment in the case of 180 kg /ha potassium. Total dry matter, number of pods and grain yield, were significantly different between the two varieties. The interaction between fertilizer and variety, on dry matter and grain yield and the interaction between irrigation and variety, on dry matter were significant. We conclude that use of potassium fertilizer can reduce the adverse effects of water stress.


2021 ◽  
Vol 42 (2) ◽  
pp. 487-500
Author(s):  
Mubshar Hussain ◽  
◽  
Muhammad Zeeshan Shahid ◽  
Noman Mehboob ◽  
Waqas Ahmed Minhas ◽  
...  

Minerals’ deficiency, including iodine (I), vitamin A, iron (Fe) and zinc (Zn) is a widespread threat to mankind. Around 2 billion people (children, women, and people of middle age group) across the globe suffer from mineral deficiencies. The productivity of mung bean is very low in arid and semi-arid regions due to little or no application of fertilizers. Majority of mung bean growing regions of Pakistan have low Zn concentration in soils. This study evaluated the impact of different Zn sources and their application methods on allometry, yield and grain biofortification of mung bean. Mung bean variety “Azri 2006” was used as experimental material. Three different Zn sources, i.e., zinc sulfate (ZnSO4), Zn-EDDHA and 50 % ZnSO4 + 50% Zn EDDHA. Application method included in the study was basal application, foliar application and 50% basal + 50% foliar application. The results indicated that Zn application improved allometric traits and productivity of mungbean. The ZnSO4 source of Zn with basal application resulted in the highest chlorophyll contents, leaf area index, number of sympodial and monopodial branches, and number of pods per plant, 1000-seeds weight, biological yield and seed yield as compared to control treatment. In conclusion, 10 kg ha-1 Zn application as basal application method seemed a viable option to improve mung bean productivity along with higher grain Zn biofortification.


2020 ◽  
Vol 25 ◽  
pp. e00423
Author(s):  
Abdul Khaliq ◽  
Sartaj Alam ◽  
Irfan Ullah Khan ◽  
Dilawar Khan ◽  
Shakela Naz ◽  
...  

Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 183
Author(s):  
Santosh Ranva ◽  
Yudh Vir Singh ◽  
Neelam Jain ◽  
Ram Swaroop Bana ◽  
Ramesh Chand Bana ◽  
...  

Rice–wheat (RW) rotation is the largest agriculture production system in South Asia with a multifaceted role in maintaining the livelihood of people. The customary practices and indiscriminate use of synthetic fertilizers have culminated in the decline of its productivity and profitability during the past two decades, thus affecting the sustainability of wheat. Safe Rock® Minerals (SRM) is a multi-nutrient rich natural rock mineral with great potential to manage soil degradation, reducing the input of fertilizers, improving soil fertility, and plant health. Thus, a field trial was conducted at the research farm of ICAR—Indian Agricultural Research Institute, New Delhi from 2016 to 2018 to evaluate the impact of Safe Rock® Minerals (SRM) on biometric parameters, productivity, quality, and nutrient uptake by conventional wheat and System of Wheat Intensification (SWI) in the wheat–rice cropping system. The results indicate that SWI performed better in terms of growth, yield, and quality parameters than conventional wheat. Among nutrient management practices; the highest growth, yield, and yield attributes of wheat were achieved with the use of SRM application 250 kg ha−1 + 100% Recommended Dose of Fertilizer (RDF). SRM application also increased grain protein content significantly. In conclusion, the integrated use of SRM with organic manures can serve as an eco-friendly approach for sustainable wheat production.


Sign in / Sign up

Export Citation Format

Share Document