Test Methods for Quantitative Extraction of Asphalt Binder from Asphalt Mixtures

Author(s):  
2019 ◽  
Author(s):  
Jusang Lee ◽  
John E. Haddock ◽  
Dario D. Batioja Alvarez ◽  
Reyhaneh Rahbar Rastegar

The main objectives of this project were to review the available balanced-mix design (BMD) methodologies, understand the I-FIT and Hamburg Wheel Tracking Test (HWTT) test methods using INDOT asphalt mixtures, and to explore the application of these tests to both a BMD approach and as performance-related Quality Control (QC) and Quality Acceptance (QA) methods. Two QA mixture specimen types, plant-mixed laboratory-compacted (PMLC) and plant-mixed field-compacted (PMFC) were used in the determination of cracking and rutting parameters. Distribution functions for the flexibility index (FI) values and rutting parameters were determined for various mixture types. The effects of specimen geometry and air voids contents on the calculated Flexibility Index (FI) and rutting parameters were investigated. The fatigue characteristics of selected asphalt mixtures were determined using the S-VECD test according to different FI levels for different conditions. A typical full-depth pavement section was implemented in FlexPAVE to explore the cracking characteristics of INDOT asphalt mixtures by investigating the relationship between the FI values of QA samples with the FlexPAVE pavement performance predictions. The FI values obtained from PMFC specimens were consistently higher than their corresponding PMLC specimens. This study also found that FI values were affected significantly by variations in specimen thickness and air voids contents, having higher FI values with higher air voids contents and thinner specimens. These observations do not agree with the general material-performance expectations that better cracking resistance is achieved with lower air voids content and thicker layers. Additionally, PG 70-22 mixtures show the lowest mean FI values followed by the PG 76-22 and 64-22 mixtures. The same order was observed from the ΔTc (asphalt binder cracking index) of INDOT’s 2017 and 2018 projects. Finally, it was found that the HWTT showed reasonable sensitivity to the different characteristics (e.g., aggregate sizes, binder types, and air voids contents) of asphalt mixtures. Mixtures containing modified asphalt binders showed better rut resistance and higher Rutting Resistance Index (RRI) than those containing unmodified binders.


2019 ◽  
Author(s):  
Teng Man

The compaction of asphalt mixture is crucial to the mechanical properties and the maintenance of the pavement. However, the mix design, which based on the compaction properties, remains largely on empirical data. We found difficulties to relate the aggregate size distribution and the asphalt binder properties to the compaction behavior in both the field and laboratory compaction of asphalt mixtures. In this paper, we would like to propose a simple hybrid model to predict the compaction of asphalt mixtures. In this model, we divided the compaction process into two mechanisms: (i) visco-plastic deformation of an ordered thickly-coated granular assembly, and (ii) the transition from an ordered system to a disordered system due to particle rearrangement. This model could take into account both the viscous properties of the asphalt binder and grain size distributions of the aggregates. Additionally, we suggest to use the discrete element method to understand the particle rearrangement during the compaction process. This model is calibrated based on the SuperPave gyratory compaction tests in the pavement lab. In the end, we compared the model results to experimental data to show that this model prediction had a good agreement with the experiments, thus, had great potentials to be implemented to improve the design of asphalt mixtures.


2021 ◽  
Vol 1023 ◽  
pp. 121-126
Author(s):  
Van Bach Le ◽  
Van Phuc Le

Although small amount of binder in asphalt concrete mixture may commonly range from 3.5 to 5.5% of total mixture as per many international specifications, it has a significant impact on the total cost of pavement construction. Therefore, this paper investigated the effects of five carbon nanotubes contents of 0.05%, 0.1%, 0.15%, 0.2%, 0.25% by asphalt weight as an additive material for binder on performance characteristics of asphalt mixtures. Performance properties of CNTs modified asphalt mixtures were investigated through the Marshall stability (MS) test, indirect tensile (IDT) test, static modulus (SM) test, wheel tracking (WT) test. The results indicated that asphalt mixtures with CNT modified binder can improve both the rutting performance, IDT strength and marshall stability of tested asphalt mixtures significantly at higher percentages of carbon nanotubes. However, the issue that should be considered is the construction cost of asphalt pavement. Based on the asphalt pavement structural analysis and construction cost, it can be concluded that an optimum CNT content of 0.1% by asphalt weight may be used as additive for asphalt binder in asphalt mixtures.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2118 ◽  
Author(s):  
Marek Pszczola ◽  
Cezary Szydlowski

In regions with low-temperatures, action transverse cracks can appear in asphalt pavements as a result of thermal stresses that exceed the fracture strength of materials used in asphalt layers. To better understand thermal cracking phenomenon, strength properties of different asphalt mixtures were investigated. Four test methods were used to assess the influence of bitumen type and mixture composition on tensile strength properties of asphalt mixtures: tensile strength was measured using the thermal stress restrained specimen test (TSRST) and the uniaxial tension stress test (UTST), flexural strength was measured using the bending beam test (BBT), and fracture toughness was measured using the semi-circular bending test (SCB). The strength reserve behavior of tested asphalt mixtures was assessed as well. The influence of cooling rate on the strength reserve was investigated and correlations between results from different test methods were also analyzed and discussed. It was observed that the type of bitumen was a factor of crucial importance to low-temperature properties of the tested asphalt concretes. This conclusion was valid for all test methods that were used. It was also observed that the level of cooling rate influenced the strength reserve and, in consequence, resistance to low-temperature cracking. It was concluded that reasonably good correlations were observed between strength results for the UTST, BBT, and SCB test methods.


2016 ◽  
Vol 78 (7-2) ◽  
Author(s):  
Fauzan Mohd Jakarni ◽  
Muhammad Fudhail Rosli ◽  
Nur Izzi Md Yusoff ◽  
Md Maniruzzaman A Aziz ◽  
Ratnasamy Muniandy ◽  
...  

This paper presents a review of moisture damage performance tests on asphalt mixtures. The moisture damage remains to be a detriment to the durability of the Hot Mix Asphalt (HMA) pavement. Moisture damage can be defined in forms of adhesive failure between bitumen and aggregates and cohesive failure within bitumen. Aggregate mineralogy, bitumen characteristics and anti-stripping additive dominantly influence the performance of asphalt mixtures towards moisture damage alongside construction methods, climate and traffic loading. Various laboratory test methods have been developed to quantify the moisture damage performance of asphalt mixtures by resembles the action in the field, including qualitative test such as Boiling Water Test (ASTM D3625) and quantitative tests such as Modified Lottman Test (AASHTO T283). Both of these tests consist of two phases, which are conditioning and evaluation phase. This paper will review the effectiveness of the selected available tests based on various asphalt mixtures materials. Generally, this study indicates that asphalt mixtures consisted of limestone aggregates, modified bitumen and addition of anti-stripping additives will provide more resistant towards moisture damage. 


Asphalt pavement is typically susceptible to moisture damage. However, it could be improved with the incorporation of additives or modifiers through binder modifications. The objective of the study is to assess the effect of adhesion promoters, namely PBL and M5000, onto the Hot Mix Asphalt (HMA). The performance of asphalt mixture has been assessed in terms of the service characteristics, the bonding properties, and mechanical performances. The service characteristics were assessed through the Workability Index (WI) and Compaction Energy Index (CEI) to evaluate the ease of asphalt mixture during the mixing and compaction stage. The bonding properties of the modified asphalt mixtures were determined using the boiling water test and static water immersion test to signify the degree of coating after undergoing specific conditioning period and temperature. The mechanical performances of the modified asphalt mixture were evaluated via Marshall stability, semi-circular bending, and modified Lottman tests. All specimens were prepared by incorporating adhesion promoters at the dosage rates of 0.5% and 1.0% by weight of asphalt binder. From the investigation, the bonding properties significantly improved for the modified asphalt mixture compared to the control mixture. The WI of the modified asphalt mixture increased while the CEI decreased in comparison to the control specimen. This implies the workability of modified asphalt mixture is better and requires less energy to be compacted. Modified asphalt mixture generally had better mechanical performance. Therefore, it can be deduced that the asphalt mixture with adhesion promoters have better overall performance than the control mixture.


Author(s):  
Tongyan Pan ◽  
Erol Tutumluer ◽  
Samuel H. Carpenter

The resilient modulus measured in the indirect tensile mode according to ASTM D 4123 reflects effectively the elastic properties of asphalt mixtures under repeated load. The coarse aggregate morphology quantified by angularity and surface texture properties affects resilient modulus of asphalt mixes; however, the relationship is not yet well understood because of the lack of quantitative measurement of coarse aggregate morphology. This paper presents findings of a laboratory study aimed at investigating the effects of the material properties of the major component on the resilient modulus of asphalt mixes, with the coarse aggregate morphology considered as the principal factor. With modulus tests performed at a temperature of 25°C, using coarse aggregates with more irregular morphologies substantially improved the resilient modulus of asphalt mixtures. An imaging-based angularity index was found to be more closely related to the resilient modulus than an imaging-based surface texture index, as indicated by a higher value of the correlation coefficient. The stiffness of the asphalt binder also had a strong influence on modulus. When the resilient modulus data were grouped on the basis of binder stiffnesses, the agreement between the coarse aggregate morphology and the resilient modulus was significantly improved in each group. Although the changes in aggregate gradation did not significantly affect the relationship between the coarse aggregate morphology and the resilient modulus, decreasing the nominal maximum aggregate size from 19 mm to 9.5 mm indicated an increasing positive influence of aggregate morphology on the resilient modulus of asphalt mixes.


Sign in / Sign up

Export Citation Format

Share Document