Fundamental Aspects of Load Transfer and Load Sharing

Author(s):  
Koeneman JB
Keyword(s):  
Author(s):  
A W Miles ◽  
R J Eveleigh ◽  
B J Wight ◽  
M I Goodwin

Interlocked intramedullary nailing is widely used for the fixation of fractures in long bones. This study investigated the biomechanical aspects of load sharing between the implant and bone for two different types of nails—a fully slotted AO/ASIF nail and a non-slotted Russell-Taylor nail—in a simulated bone healing model using composite model femora. The results demonstrated the different load-sharing characteristics of the two nail types in torsion but similar behaviour in bending. The techniques applied provided a useful basis on which to evaluate these types of implants.


2004 ◽  
Vol 126 (6) ◽  
pp. 803-814 ◽  
Author(s):  
B. E. Layton ◽  
A. M. Sastry

Peripheral neuropathy affects approximately 50% of the 15 million Americans with diabetes. It has been suggested that mechanical effects related to collagen glycation are related to the permanence of neuropathy. In the present paper, we develop a model for load transfer in a whole nerve, using a simple pressure vessel approximation, in order to assess the significant of stiffening of the collagenous nerve sheath on endoneurial fluid pressure. We also develop a fibril-scale mechanics model for the nerve, to model the straightening of wavy fibrils, producing the toe region observed in nerve tissue, and also to interrogate the effects of interfibrillar crosslinks on the overall properties of the tissue. Such collagen crosslinking has been implicated in complications in diabetic tissues. Our fibril-scale model uses a two-parameter Weibull model for fibril strength, in combination with statistical parameters describing fibril modulus, angle, wave-amplitude, and volume fraction to capture both toe region and failure region behavior of whole rat sciatic nerve. The extrema of equal and local load-sharing assumptions are used to map potential differences in diabetic and nondiabetic tissues. This work may ultimately be useful in differentiating between the responses of normal and heavily crosslinked tissue.


2010 ◽  
Vol 132 (11) ◽  
Author(s):  
Amélie Chagnon ◽  
Carl-Éric Aubin ◽  
Isabelle Villemure

Spine degeneration is a pathology that will affect 80% of the population. Since the intervertebral disks play an important role in transmitting loads through the spine, the aim of this study was to evaluate the biomechanical impact of disk properties on the load carried by healthy (Thompson grade I) and degenerated (Thompson grades III and IV) disks. A three-dimensional parametric poroelastic finite element model of the L4/L5 motion segment was developed. Grade I, grade II, and grade IV disks were modeled by altering the biomechanical properties of both the annulus and nucleus. Models were validated using published creep experiments, in which a constant compressive axial stress of 0.35 MPa was applied for 4 h. Pore pressure (PP) and effective stress (SE) were analyzed as a function of time following loading application (1 min, 5 min, 45 min, 125 min, and 245 min) and discal region along the midsagittal profile for each disk grade. A design of experiments was further implemented to analyze the influence of six disk parameters (disk height (H), fiber proportion (%F), drained Young's modulus (Ea,En), and initial permeability (ka,kn) of both the annulus and nucleus) on load-sharing for disk grades I and IV. Simulations of grade I, grade III, and grade IV disks agreed well with the available published experimental data. Disk height (H) had a significant influence (p<0.05) on the PP and SE during the entire loading history for both healthy and degenerated disk models. Young’s modulus of the annulus (Ea) significantly affected not only SE in the annular region for both disk grades in the initial creep response but also SE in the nucleus zone for degenerated disks with further creep response. The nucleus and annulus permeabilities had a significant influence on the PP distribution for both disk grades, but this effect occurred at earlier stages of loading for degenerated than for healthy disk models. This is the first study that investigates the biomechanical influence of both geometrical and material disk properties on the load transfer of healthy and degenerated disks. Disk height is a significant parameter for both healthy and degenerated disks during the entire loading. Changes in the annulus stiffness, as well as in the annulus and nucleus permeability, control load-sharing in different ways for healthy and degenerated disks.


Author(s):  
Chengcan Wang ◽  
Jin-Tae Han ◽  
Seokjung Kim

A waveform microiple(WMP) uses jet grouting method to generate shear keys along the pile shaft for improving the shaft resistance and cost efficiency. In this study,field loading tests were performed in this study to characterize the load sharing behavior upon inclusion of a waveform micropile (WMP) in a group of four micropiled-raft. First, single-pile compressive loading tests were conducted on three WMPs and five Type A micropiles (MP). Subsequently, a group-pile loading test was performed on a piled raft comprising 2 × 2 MPs and a central WMP. The load–settlements, axial stiffnesses, and load transfer mechanisms of individual MPs were analyzed during the tests, including the short- and long-term effects of the axial stiffnesses of the MPs on the load sharing ratio of the micropiled-raft. The single-pile loading test results revealed that the shear keys along the WMPs caused its bearing capacities and axial stiffnesses to be 1.5 times and 2–5 times higher than those of MPs, respectively. In the micropiled-raft loading test, the load sharing ratios of the MPs increased with their axial stiffnesses, and the highest load sharing capacity was exhibited by the WMP, which constituted 30% of the total load and 2–3 times that of MPs. Moreover, the influence of raft on the load-sharing capacity should be considered as well.


Author(s):  
M. R. Pinnel ◽  
A. Lawley

Numerous phenomenological descriptions of the mechanical behavior of composite materials have been developed. There is now an urgent need to study and interpret deformation behavior, load transfer, and strain distribution, in terms of micromechanisms at the atomic level. One approach is to characterize dislocation substructure resulting from specific test conditions by the various techniques of transmission electron microscopy. The present paper describes a technique for the preparation of electron transparent composites of aluminum-stainless steel, such that examination of the matrix-fiber (wire), or interfacial region is possible. Dislocation substructures are currently under examination following tensile, compressive, and creep loading. The technique complements and extends the one other study in this area by Hancock.The composite examined was hot-pressed (argon atmosphere) 99.99% aluminum reinforced with 15% volume fraction stainless steel wire (0.006″ dia.).Foils were prepared so that the stainless steel wires run longitudinally in the plane of the specimen i.e. the electron beam is perpendicular to the axes of the wires. The initial step involves cutting slices ∼0.040″ in thickness on a diamond slitting wheel.


Author(s):  
Warren J. Moberly ◽  
Daniel B. Miracle ◽  
S. Krishnamurthy

Titanium-aluminum alloy metal matrix composites (MMC) and Ti-Al intermetallic matrix composites (IMC), reinforced with continuous SCS6 SiC fibers are leading candidates for high temperature aerospace applications such as the National Aerospace Plane (NASP). The nature of deformation at fiber / matrix interfaces is characterized in this ongoing research. One major concern is the mismatch in coefficient of thermal expansion (CTE) between the Ti-based matrix and the SiC fiber. This can lead to thermal stresses upon cooling down from the temperature incurred during hot isostatic pressing (HIP), which are sufficient to cause yielding in the matrix, and/or lead to fatigue from the thermal cycling that will be incurred during application, A second concern is the load transfer, from fiber to matrix, that is required if/when fiber fracture occurs. In both cases the stresses in the matrix are most severe at the interlace.


Geotecnia ◽  
2014 ◽  
Vol 130 ◽  
pp. 79-99
Author(s):  
David Jorge Pereira Fernandes ◽  
◽  
<br>António Viana da Fonseca ◽  

Author(s):  
Juliana Emery Silva ◽  
Brenno Tavares Duarte ◽  
Rodrigo Ribeiro Pinho Rodarte ◽  
Paulo Pedro Kenedi
Keyword(s):  

Actuators ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 45 ◽  
Author(s):  
Frank Otremba ◽  
José Romero Navarrete ◽  
Alejandro Lozano Guzmán

Road safety depends on several factors associated with the vehicle, to the infrastructure, as well as to the environment and experience of vehicle drivers. Concerning the vehicle factors influencing the safety level of an infrastructure, it has been shown that the dynamic interaction between the carried liquid cargo and the vehicle influences the operational safety limits of the vehicle. A combination of vehicle and infrastructure factors converge when a vehicle carrying liquid cargo at a partial fill level performs a braking maneuver along a curved road segment. Such a maneuver involves both longitudinal and lateral load transfers that potentially affect both the braking efficiency and the lateral stability of the vehicle. In this paper, a series of models are set together to simulate the effects of a sloshing cargo on the braking efficiency and load transfer rate of a partially filled road tanker. The model assumes the superposition of the roll and pitch independent responses, while the vehicle is equipped with Anti-lock braking System brakes (ABS) in the four wheels. Results suggest that cargo sloshing can affect the performance of the vehicle on the order of 2% to 9%, as a function of the performance measure considered. A dedicated ABS system could be considered to cope with such diminished performance.


Sign in / Sign up

Export Citation Format

Share Document