Water Jet Impact Damage in a Cobalt-Chromium-Tungsten Alloy

2009 ◽  
pp. 111-111-14
1974 ◽  
Vol 41 (4) ◽  
pp. 907-911 ◽  
Author(s):  
G. W. Vickers

Results showing the damage arising from water jet impact on convex, concave, and flat-inclined polymethylmethacrylate targets are presented and discussed. The direction and distribution of surface cracks and pits within the zone of impact are related to liquid flow during the impact and the essential features of the damage are analyzed in terms of stress wave phenomena.


Alloy Digest ◽  
1977 ◽  
Vol 26 (4) ◽  

Abstract STOODY 4 is a cobalt-chromium-tungsten alloy with excellent high-temperature strength and excellent resistance to corrosion. This alloy derives its high-temperature strength from the high tungsten-to-carbon ratio which allows a large percentage of tungsten to remain in solid solution. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive strength. It also includes information on high temperature performance and corrosion resistance as well as heat treating, machining, and joining. Filing Code: Co-75. Producer or source: WRAP Division, Stoody Company.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012073
Author(s):  
S E Yakush ◽  
N S Sivakov ◽  
V I Melikhov ◽  
O I Melikhov

Abstract Splashes of high-temperature melt spreading over a water pool bottom can be a reason for the formation of a zone where melt, water and steam are mixed, providing conditions for powerful steam explosions. The paper considers the formation of melt splashes arising from the impact of a water jet on the surface of the melt. Numerical simulations are performed in 3D formulation, using the VOF method and an improved phase change model. The evolution of melt surface following the water jet impact is demonstrated, including the formation of a cavern, a primary melt splash known as the crown, as well as a secondary splash following the collapse of the cavern, known as the cumulative jet. Parametric study for the melt splash height dependence on the water jet geometry and velocity is carried out. The results of numerical analysis are discussed from the point of view of the similarity with respect to the momentum and kinetic energy of water jet. The significance of the results for the steam explosion problem is discussed.


2012 ◽  
Vol 565 ◽  
pp. 339-344 ◽  
Author(s):  
H. Qi ◽  
J.M. Fan ◽  
Jun Wang

An experimental study of the machining process for micro-channels on a brittle quartz crystal material by an abrasive slurry jet (ASJ) is presented. A statistical experiment design considering the major process variables is conducted, and the machined surface morphology and channelling performance are analysed to understand the micro-machining process. It is found that a good channel top edge appearance and bottom surface quality without wavy patterns can be achieved by employing relatively small particles at shallow jet impact angles. The major channel performance measures, i.e. material removal rate (MRR) and channel depth, are then discussed with respect to the process parameters. It shows that with a proper control of the process variables, the abrasive water jet (AWJ) technology can be used for the micro-machining of brittle materials with high quality and productivity.


Author(s):  
M. J. Jackson

This paper discusses water jet machining of selected materials using a non-traditional way of delivering water jets in the form of a series of discrete pulses. The theory of water jet impact has been used to demonstrate the principle of removing material by exploiting the existence of a Rayleigh wave that excites the formation of surface cracks and the lateral outflow of water that extends the cracks and removes material. A mathematical model has been developed that predicts changes in the response characteristics of materials owing to an idealised representation of a finite jet of water impacting a plane surface. The analytical approach used is applicable to the first stages of impact where the compressibility of water in the droplet is significant. The predicted response characteristics are compared with experimental data generated using controlled water jet impacts produced by a specially constructed pulsed water jet machining centre. The predicted response of selected materials compare well with experimental data. The results presented in this paper illustrate the importance of using pulsed water jets as a way of machining materials in a non-traditional manner.


2014 ◽  
Vol 1017 ◽  
pp. 228-233 ◽  
Author(s):  
Yong Wang ◽  
Hong Tao Zhu ◽  
Chuan Zhen Huang ◽  
Jun Wang ◽  
Peng Yao ◽  
...  

Abrasive water jet machining is considered as a promising technique in hard and brittle material processing. This paper studies the erosion performance of the alumina ceramics in the different process parameters. In the erosion experiments, alumina ceramics wafers were eroded by the abrasive waterjet machining. The single factor experiments were carried out to understand the effect of different process parameters (jet impact angle, standoff distance, water pressure, abrasive particle diameter) on the material removal rate (MRR), the removal depth and surface roughness (Ra). The experimental results can provide guidance for alumina ceramics abrasive water jet cutting and polishing.


Author(s):  
G. Li ◽  
D. Chang ◽  
Z. Shen ◽  
Z. Huang ◽  
S. Tian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document