Water Jet Impact Damage at Convex, Concave, and Flat-Inclined Surfaces

1974 ◽  
Vol 41 (4) ◽  
pp. 907-911 ◽  
Author(s):  
G. W. Vickers

Results showing the damage arising from water jet impact on convex, concave, and flat-inclined polymethylmethacrylate targets are presented and discussed. The direction and distribution of surface cracks and pits within the zone of impact are related to liquid flow during the impact and the essential features of the damage are analyzed in terms of stress wave phenomena.

2021 ◽  
Vol 2119 (1) ◽  
pp. 012073
Author(s):  
S E Yakush ◽  
N S Sivakov ◽  
V I Melikhov ◽  
O I Melikhov

Abstract Splashes of high-temperature melt spreading over a water pool bottom can be a reason for the formation of a zone where melt, water and steam are mixed, providing conditions for powerful steam explosions. The paper considers the formation of melt splashes arising from the impact of a water jet on the surface of the melt. Numerical simulations are performed in 3D formulation, using the VOF method and an improved phase change model. The evolution of melt surface following the water jet impact is demonstrated, including the formation of a cavern, a primary melt splash known as the crown, as well as a secondary splash following the collapse of the cavern, known as the cumulative jet. Parametric study for the melt splash height dependence on the water jet geometry and velocity is carried out. The results of numerical analysis are discussed from the point of view of the similarity with respect to the momentum and kinetic energy of water jet. The significance of the results for the steam explosion problem is discussed.


Author(s):  
M. J. Jackson

This paper discusses water jet machining of selected materials using a non-traditional way of delivering water jets in the form of a series of discrete pulses. The theory of water jet impact has been used to demonstrate the principle of removing material by exploiting the existence of a Rayleigh wave that excites the formation of surface cracks and the lateral outflow of water that extends the cracks and removes material. A mathematical model has been developed that predicts changes in the response characteristics of materials owing to an idealised representation of a finite jet of water impacting a plane surface. The analytical approach used is applicable to the first stages of impact where the compressibility of water in the droplet is significant. The predicted response characteristics are compared with experimental data generated using controlled water jet impacts produced by a specially constructed pulsed water jet machining centre. The predicted response of selected materials compare well with experimental data. The results presented in this paper illustrate the importance of using pulsed water jets as a way of machining materials in a non-traditional manner.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5399
Author(s):  
Sławomir Spadło ◽  
Damian Bańkowski ◽  
Piotr Młynarczyk ◽  
Irena M. Hlaváčová

This article considers effects of local heat transfer taking place insteel cutting by abrasive water jet machining (AWJM). The influence of temperature changes during AWJM has not been investigated thoroughly. Most studies on AWJM suggest that thermal energy has little or no effect on the material cut. This study focused on the analysis of the material microstructure and indentation microhardness in the jet impact zone and the adjacent area. The structure features revealed through optical metallography and scanning microscopy suggest local temperature changes caused by the impact of the abrasive water jet against the workpiece surface. From the microscopic examinationand hardness tests, it is clear that, during the process, large amounts of energy were transferred locally. The mechanical stress produced by the water jet led to plastic deformation at and near the surface. This was accompanied by the generation and transfer of large amounts of heat resulting in a local rise in temperature to 450 °C or higher.


Author(s):  
Nobuaki Kawai ◽  
Mikio Nagano ◽  
Sunao Hasegawa ◽  
Eiichi Sato

Abstract In the fields of space engineering and planetary science, hypervelocity impact phenomena have been studied as they relate to the space debris problem and planetary impact. With regard to hypervelocity-impact-induced damage, many studies focus on the evaluation of impact-damage geometry and morphology, for example, to construct the ballistic limit equations and/or penetrating equations for space structures, and to predict the size and shape of crater and fragments generated by planetary impact [1-4]. While the final state or late stage of an impact event are of primal interest, damage accumulation at early stages affect the overall outcome of the impact event. The understanding of hypervelocity-impact-damage processes lead to improvement of material-response models for hypervelocity impact and higher fidelity simulations of hypervelocity impact events. Under such a background, we have performed real-time imaging of hypervelocity-impact events on transparent materials to investigate the impact-damage formation and evolution processes [5-7]. In our previous work, the stress-wave-propagation behavior and damage evolution were observed by means of a transmitted light shadowgraph. In these measurements, the shape of the longitudinal-stress-wave front, crater and spall fracture were successfully visualized. On the other hand, these shadowgraph images provide little information about damage microstructure. The shadowgraph has difficulty in visualizing ramped waves, such as the release wave, and also for the shear wave which is not accompanied by the change of volumetric strain. Those play important role in initiating damage. This occurs because the intensity of the shadowgraph image depends on the second spatial derivative of the refractive index. In this study, we try two types of real-time imaging of impact events. One is imaging by using scattered light on the impacted target to visualize the microstructure of the impact-induced damage, the other is a shadowgraph using polarized light to visualize propagation of the impact-induced stress field.


Author(s):  
Fuzhu Li ◽  
Peiyu He ◽  
Zhipeng Chen ◽  
Shangshuan Chen ◽  
Jun Guo ◽  
...  

Micro-feature arrays and large-area complex microscopic features on thin metallic sheet play an important role in micro-components. A novel technique-submerged water-jet cavitation shocking-is presented to generate micro-feature arrays on 304 stainless foils in this paper. High-speed camera shadowgraph images of the cavitation cloud were employed to analyze the impact zone. Then the forming depth, uniformity of forming depth and the thickness distribution of the micro-feature arrays were also studied. The results show that the forming region can be categorized into the jet-impact-zone, the bubble-impact-zone and the periphery-impact-zone radially. Bubble-impact-zone peaks in the depth of array micro-forming. The forming depth increases with time while the uniformity decreases with time. The forming parts have a uniform thickness distribution.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jialiang Liu ◽  
Yujie Zhu ◽  
Yongzhi Xue ◽  
Hao Sun

Abrasive water jet (AWJ) breaking technology is suitable for the maintenance and repair of concrete structures, generating minimal dust, low tool wear, and no vibrations or selective destruction. The failure features and mechanisms of concrete subjected to AWJ impact are fundamental issues of AWJ breaking technology, which are also related to the safety and quality of engineering construction. Based on computed tomography (CT), scanning electron microscopy (SEM), and image processing technology, this paper studied the fragmentation pattern and removal mechanism of concrete under AWJ impact. The general failure characteristics and crack propagation law of concrete subjected to AWJ impact were described through AWJ impact concrete tests. The spatial distribution of damage in concrete subjected to AWJ impact can be divided into the intensive action zone, the transition zone, and the weak action zone. The removal mechanism of AWJ was discussed by comparing the impact performance of a pure water jet (PWJ) system. The results indicate that abrasive particles can cause cliff-shaped fracture and lip-shaped distortion in the aggregate part and flat fracture surface in the matrix part. There is no obvious crack in the interfacial transition zone (ITZ) due to the weakening of the water wedge effect.


2019 ◽  
Vol 11 (02) ◽  
pp. 1950019 ◽  
Author(s):  
Lin Gan ◽  
He Zhang ◽  
Cheng Zhou ◽  
Lin Liu

Rotating scanning motor is the important component of synchronous scanning laser fuze. High emission overload environment in the conventional ammunition has a serious impact on the reliability of the motor. Based on the theory that the buffer pad can attenuate the impact stress wave, a new motor buffering Isolation Method is proposed. The dynamical model of the new buffering isolation structure is established by ANSYS infinite element analysis software to do the nonlinear impact dynamics simulation of rotating scanning motor. The effectiveness of Buffering Isolation using different materials is comparatively analyzed. Finally, the Macht hammer impact experiment is done, the results show that in the experience of the 70,000[Formula: see text]g impact acceleration, the new buffering Isolation method can reduce the impact load about 15 times, which can effectively alleviate the plastic deformation of rotational scanning motor and improve the reliability of synchronization scanning system. A new method and theoretical basis of anti-high overload research for Laser Fuze is presented.


Author(s):  
Wei Xu ◽  
C. Guedes Soares

AbstractThe objective of this paper is to study the residual ultimate strength of box beams with impact-induced damage, as a model of what may occur in ship hulls. The bottom and side plates of ship hulls can suffer denting or fracture damage due to grounding, collision and other contacts during the ship’s service life and these impact-induced damages could result in considerable strength degradation. Box beams are firstly subjected to impact loading and then four-point bending loading is imposed on the damaged structures to assess the residual strength using ANSYS/LS_DYNA. The ultimate moment and collapse modes are discussed considering the effect of impact location. The impact-induced deformation is introduced in the four-point bending simulation, and the impact-induced stress is included or not to determine the effect of residual stress and distortion after impact. It is shown that impact location has significant influence on the residual ultimate bending moment of the damaged box beam providing that the impact energy is kept constant. The collapse modes also change when the impactor strikes on different locations. Damaged hard corner and inclined neutral axes might explain the reduction of ultimate strength and diverse collapse modes. The residual stress in the box beam after impact may increase or decrease the ultimate strength depending on impact location.


2013 ◽  
Vol 473 ◽  
pp. 39-45 ◽  
Author(s):  
Guo Wei Zhao ◽  
Yong Chen ◽  
De Yong Li ◽  
Bin Tang

The aim was to analyze failure mechanism of electromagnetic relay caused by mechanical impact. The principle of electromagnetic relays was studied and the effect of mechanical impact on electromagnetic relays was analyzed in this paper. Based on the established magnetic circuit model, the relationship of the magnetic field strength, the electromagnetic attraction and the impact damage degree was studied. Then, the damage intensity of mechanical impact on magnetic circuit was decided. Afterwards, the structure of electromagnetic relays was improved, and the mechanical impact simulation was studied by ANSYS. The results show that the uncontrollability of electromagnetic relay is mainly caused by air gap, which is aroused by mechanical impact; in addition, the size of air gap is inversely proportional to electromagnetic attraction force. Moreover, the improved structure of relays can increase impact resistance and broaden the scope of engineering application of electromagnetic relay.


Sign in / Sign up

Export Citation Format

Share Document