scholarly journals Failure volume under particle water-jet impact in deep well drilling engineering: Mathematical modeling and verification analysis

2021 ◽  
Vol 60 (1) ◽  
pp. 1839-1849
Author(s):  
Fushen Ren ◽  
Tiancheng Fang ◽  
Xiaoze Cheng ◽  
Jianxun Cheng
2021 ◽  
Vol 66 (05) ◽  
pp. 192-195
Author(s):  
Rövşən Azər oğlu İsmayılov ◽  

The aricle is about the pipe stick problems of deep well drilling. Pipe stick problem is one of the drilling problems. There are two types of pipe stick problems exist. One of them is differential pressure pipe sticking. Another one of them is mechanical pipe sticking. There are a lot of reasons for pipe stick problems. Indigators of differential pressure sticking are increase in torque and drug forces, inability to reciprocate drill string and uninterrupted drilling fluid circulation. Key words: pipe stick, mecanical pipe stick,difference of pressure, drill pipe, drilling mud, bottomhole pressure, formation pressure


Author(s):  
Richard C. Jaeger ◽  
Jun Chen ◽  
Jeffrey C. Suhling ◽  
Leonid Fursin

Stress sensors have shown potential to provide “health monitoring” of a wide range of issues related to packaging of integrated circuits, and silicon carbide offers the advantage of much higher temperature sensor operation with application in packaged high-voltage, high-power SiC devices as well as both automotive and aerospace systems, geothermal plants, and deep well drilling, to name a few. This paper discusses the theory and uniaxial calibration of resistive stress sensors on 4H silicon carbide (4H-SiC) and provides new theoretical descriptions for four-element resistor rosettes and van der Pauw (VDP) stress sensors. The results delineate the similarities and differences relative to those on (100) silicon: resistors on the silicon face of 4H-SiC respond to only four of the six components of the stress state; a four-element rosette design exists for measuring the in-plane stress components; two stress quantities can be measured in a temperature compensated manner. In contrast to silicon, only one combined coefficient is required for temperature compensated stress measurements. Calibration results from a single VDP device can be used to calculate the basic lateral and transverse piezoresistance coefficients for 4H-SiC material. Experimental results are presented for lateral and transverse piezoresistive coefficients for van der Pauw structures and p- and n-type resistors. The VDP devices exhibit the expected 3.16 times higher stress sensitivity than standard resistor rosettes.


1998 ◽  
Author(s):  
MingLiang Zhu ◽  
ShengQi Wang ◽  
Yuncai Mao ◽  
Jie Dong

2021 ◽  
Vol 2119 (1) ◽  
pp. 012073
Author(s):  
S E Yakush ◽  
N S Sivakov ◽  
V I Melikhov ◽  
O I Melikhov

Abstract Splashes of high-temperature melt spreading over a water pool bottom can be a reason for the formation of a zone where melt, water and steam are mixed, providing conditions for powerful steam explosions. The paper considers the formation of melt splashes arising from the impact of a water jet on the surface of the melt. Numerical simulations are performed in 3D formulation, using the VOF method and an improved phase change model. The evolution of melt surface following the water jet impact is demonstrated, including the formation of a cavern, a primary melt splash known as the crown, as well as a secondary splash following the collapse of the cavern, known as the cumulative jet. Parametric study for the melt splash height dependence on the water jet geometry and velocity is carried out. The results of numerical analysis are discussed from the point of view of the similarity with respect to the momentum and kinetic energy of water jet. The significance of the results for the steam explosion problem is discussed.


2021 ◽  
pp. 10-15
Author(s):  
H.O. Veliyev ◽  
◽  
R.M. Zeynalov ◽  
E.A. Kazimov ◽  
T.M. Ahmadov ◽  
...  

The paper reviews the major ways of reducing failure cases during drilling works on the territory of Azerbaijan and South Caspian basin, as well as in oil-gas bearing structures of the Caspian Sea considering geodynamic tension of reservoirs, seismic activity and the occurrences of velocity changes. If not considering such aspects as seismodynamic activity of the territory and geodynamic tensions, failure and complication risks in the process of deep well drilling sharply increase. Physical-chemical features of rocks in the same formation are not similar and various patterns of complicated seismic record can be seen. It is necessary to study in detail the patterns of seismic record in different directions of seismic profile passing near the location selected for the project well. Foremost, it is significant to reveal the interval of drilled reservoir, where the complicated record is occurred and specify the reasons for the sharp difference in wave field patterns. Moreover, while conducting drilling works in the areas with complicated features, the failure case risks should be considered as well.


2012 ◽  
Vol 565 ◽  
pp. 339-344 ◽  
Author(s):  
H. Qi ◽  
J.M. Fan ◽  
Jun Wang

An experimental study of the machining process for micro-channels on a brittle quartz crystal material by an abrasive slurry jet (ASJ) is presented. A statistical experiment design considering the major process variables is conducted, and the machined surface morphology and channelling performance are analysed to understand the micro-machining process. It is found that a good channel top edge appearance and bottom surface quality without wavy patterns can be achieved by employing relatively small particles at shallow jet impact angles. The major channel performance measures, i.e. material removal rate (MRR) and channel depth, are then discussed with respect to the process parameters. It shows that with a proper control of the process variables, the abrasive water jet (AWJ) technology can be used for the micro-machining of brittle materials with high quality and productivity.


Sign in / Sign up

Export Citation Format

Share Document