scholarly journals Improving parameters of planar pulse diode using gettering

Pulse diodes are widely used as part of high-frequency pulse circuits. However, it should be noted that the cost of pulsed diodes remains relatively high, due to the low yield of suitable devices when they are sorted according to the criteria of reverse current and rated capacitance. This is largely caused by the significant dependence of their electrical parameters on the density of structural defects and impurities in the active regions of the diodes. The study is devoted to identifying the causes and mechanisms of the low yield of diodes when they are sorted according to the criteria of reverse current and rated capacitance, as well as determining the possibility of using gettering operations to increase the yield of suitable devices. It is found that the low yield of the diodes is caused by the structural defects that are formed in the active areas of the diodes during high-temperature technological operations. The paper describes the mechanisms in which the structural defects affect the electrical parameters of diodes. The proposed technology for manufacturing diode structures using gettering of structural impurity defects by means of high-temperature annealing in an inert medium before the thermal oxidation operation is considered. It is shown that high-temperature annealing of silicon structures before thermal oxidation eliminates packing defects formed during epitaxy, cleans the active areas of the diodes from nuclei of defects and unwanted impurities, and prevents the formation of structural defects in them during the subsequent high-temperature thermal operations. The use of the proposed technology allows increasing the yield of suitable diode structures by 8.9% when sorted according to rated capacitance and by 9.4% when sorted according to reverse current, the level of reverse currents reducing by 2—9 times.

2009 ◽  
Vol 156-158 ◽  
pp. 493-498
Author(s):  
Ming Hung Weng ◽  
Fabrizio Roccaforte ◽  
Filippo Giannazzo ◽  
Salvatore di Franco ◽  
Corrado Bongiorno ◽  
...  

This paper reports a detailed study of the electrical activation and the surface morphology of 4H-SiC implanted with different doping ions (P for n-type doping and Al for p-type doping) and annealed at high temperature (1650–1700 °C) under different surface conditions (with or without a graphite capping layer). The combined use of atomic force microscopy (AFM), transmission electron microscopy (TEM), and scanning capacitance microscopy (SCM) allowed to clarify the crucial role played by the implant damage both in evolution of 4H-SiC surface roughness and in the electrical activation of dopants after annealing. The high density of broken bonds by the implant makes surface atoms highly mobile and a peculiar step bunching on the surface is formed during high temperature annealing. This roughness can be minimized by using a capping layer. Furthermore, residual lattice defects or precipitates were found in high dose implanted layers even after high temperature annealing. Those defects adversely affect the electrical activation, especially in the case of Al implantation. Finally, the electrical properties of Ni and Ti/Al alloy contacts on n-type and p-type implanted regions of 4H-SiC were studied. Ohmic behavior was observed for contacts on the P implanted area, whilst high resistivity was obtained in the Al implanted layer. Results showed a correlation of the electrical behavior of contacts with surface morphology, electrical activation and structural defects in ion-implanted, particularly, Al doped layer of 4H-SiC.


2010 ◽  
Vol 645-648 ◽  
pp. 1211-1214
Author(s):  
Fabrizio Roccaforte ◽  
Ferdinando Iucolano ◽  
Filippo Giannazzo ◽  
Salvatore di Franco ◽  
Corrado Bongiorno ◽  
...  

In this paper, the evolution of the electrical behaviour of GaN and AlGaN materials after high-temperature annealing and thermal oxidation is discussed. In particular, annealing above 1100°C, required for electrical activation of implanted species, increases the surface state density, reducing the metal/GaN Schottky barriers and increasing the leakage current. On the other hand, the thermal oxidation at 900°C of AlGaN/GaN heterostructures showed the formation of a thin oxide layer, which can be able to passivate surface defects and/or can serve as inter-device isolation. However, a decrease of the sheet carrier density in the two dimensional electron gas (2DEG) was observed when the material is subjected to such high thermal budgets. The results are discussed considering the possible optimizations and applications to GaN-devices technology.


Author(s):  
P. Roitman ◽  
B. Cordts ◽  
S. Visitserngtrakul ◽  
S.J. Krause

Synthesis of a thin, buried dielectric layer to form a silicon-on-insulator (SOI) material by high dose oxygen implantation (SIMOX – Separation by IMplanted Oxygen) is becoming an important technology due to the advent of high current (200 mA) oxygen implanters. Recently, reductions in defect densities from 109 cm−2 down to 107 cm−2 or less have been reported. They were achieved with a final high temperature annealing step (1300°C – 1400°C) in conjunction with: a) high temperature implantation or; b) channeling implantation or; c) multiple cycle implantation. However, the processes and conditions for reduction and elimination of precipitates and defects during high temperature annealing are not well understood. In this work we have studied the effect of annealing temperature on defect and precipitate reduction for SIMOX samples which were processed first with high temperature, high current implantation followed by high temperature annealing.


Alloy Digest ◽  
1993 ◽  
Vol 42 (4) ◽  

Abstract Ferroperm is a soft magnetic alloy that contains 1% aluminum. This addition of aluminum combined with high-temperature annealing increases permeability and reduces coercivity without decreasing the high-saturation magnetization of pure iron. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on forming. Filing Code: FE-99. Producer or source: NKK Corporation.


2018 ◽  
Vol 42 (1) ◽  
pp. 149-158
Author(s):  
SHUANG XI ◽  
SHUANGSHUANG ZUO ◽  
YING LIU ◽  
YINLONG ZHU ◽  
YUTU YANG ◽  
...  

2020 ◽  
Vol 217 (14) ◽  
pp. 1900868 ◽  
Author(s):  
Shohei Teramura ◽  
Yuta Kawase ◽  
Yusuke Sakuragi ◽  
Sho Iwayama ◽  
Motoaki Iwaya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document