Single-Unit Recordings Reveal the Selectivity of a Human Face Area

2021 ◽  
pp. JN-RM-0349-21
Author(s):  
Thomas Decramer ◽  
Elsie Premereur ◽  
Qi Zhu ◽  
Wim Van Paesschen ◽  
Johannes van Loon ◽  
...  
2002 ◽  
Vol 13 (04) ◽  
pp. 188-204 ◽  
Author(s):  
Shigeyuki Kuwada ◽  
Julia S. Anderson ◽  
Ranjan Batra ◽  
Douglas C. Fitzpatrick ◽  
Natacha Teissier ◽  
...  

The scalp-recorded amplitude-modulation following response (AMFR)” is gaining recognition as an objective audiometric tool, but little is known about the neural sources that underlie this potential. We hypothesized, based on our human studies and single-unit recordings in animals, that the scalp-recorded AMFR reflects the interaction of multiple sources. We tested this hypothesis using an animal model, the unanesthetized rabbit. We compared AMFRs recorded from the surface of the brain at different locations and before and after the administration of agents likely to enhance or suppress neural generators. We also recorded AMFRs locally at several stations along the auditory neuraxis. We conclude that the surface-recorded AMFR is indeed a composite response from multiple brain generators. Although the response at any modulation frequency can reflect the activity of more than one generator, the AMFRs to low and high modulation frequencies appear to reflect a strong contribution from cortical and subcortical sources, respectively.


2021 ◽  
Vol 11 (6) ◽  
pp. 761
Author(s):  
Gert Dehnen ◽  
Marcel S. Kehl ◽  
Alana Darcher ◽  
Tamara T. Müller ◽  
Jakob H. Macke ◽  
...  

Single-unit recordings in the brain of behaving human subjects provide a unique opportunity to advance our understanding of neural mechanisms of cognition. These recordings are exclusively performed in medical centers during diagnostic or therapeutic procedures. The presence of medical instruments along with other aspects of the hospital environment limit the control of electrical noise compared to animal laboratory environments. Here, we highlight the problem of an increased occurrence of simultaneous spike events on different recording channels in human single-unit recordings. Most of these simultaneous events were detected in clusters previously labeled as artifacts and showed similar waveforms. These events may result from common external noise sources or from different micro-electrodes recording activity from the same neuron. To address the problem of duplicate recorded events, we introduce an open-source algorithm to identify these artificial spike events based on their synchronicity and waveform similarity. Applying our method to a comprehensive dataset of human single-unit recordings, we demonstrate that our algorithm can substantially increase the data quality of these recordings. Given our findings, we argue that future studies of single-unit activity recorded under noisy conditions should employ algorithms of this kind to improve data quality.


1982 ◽  
Vol 8 (4) ◽  
pp. 443-444 ◽  
Author(s):  
J.S. Schneider ◽  
A.A. Castaldi ◽  
T.I. Lidsky

2000 ◽  
Vol 88 (4) ◽  
pp. 1489-1495 ◽  
Author(s):  
David F. Donnelly ◽  
Ricardo Rigual

A preparation was developed that allows for the recording of single-unit chemoreceptor activity from mouse carotid body in vitro. An anesthetized mouse was decapitated, and each carotid body was harvested, along with the sinus nerve, glossopharyngeal nerve, and petrosal ganglia. After exposure to collagenase/trypsin, the cleaned complex was transferred to a recording chamber where it was superfused with oxygenated saline. The ganglia was searched for evoked or spontaneous unit activity by using a glass suction electrode. Single-unit action potentials were 57 ± 10 (SE) ( n = 16) standard deviations above the recording noise, and spontaneous spikes were generated as a random process. Decreasing superfusate[Formula: see text] to near 20 Torr caused an increase in spiking activity from 1.3 ± 0.4 to 14.1 ± 1.9 Hz ( n = 16). The use of mice for chemoreceptor studies may be advantageous because targeted gene deletions are well developed in the mouse model and may be useful in addressing unresolved questions regarding the mechanism of chemotransduction.


Author(s):  
Bradley Barth ◽  
Hsin-I Huang ◽  
Gianna Hammer ◽  
Xiling Shen

Advanced electrode designs have made single-unit neural recordings commonplace among modern neuroscience research. However, single-unit resolution remains out of reach for the intrinsic neurons of the gastrointestinal system. Single-unit recordings of the enteric (gut) nervous system have been conducted in anesthetized animal models and excised tissue, but there is a large physiological gap between awake and anesthetized animals, particularly for the enteric nervous system. Here, we describe the opportunity for advancing enteric neuroscience offered by single-unit recording capabilities in awake animals. We highlight the primary challenges to microelectrodes in the gastrointestinal system including structural, physiological, and signal quality challenges.


Perception ◽  
1997 ◽  
Vol 26 (11) ◽  
pp. 1341-1352 ◽  
Author(s):  
Lothar Spillmann

This overview takes the reader from the classical contrast and assimilation studies of the past to today's colour research, in a broad sense, with its renewed emphasis on the phenomenological qualities of visual perception. It shows how the shift in paradigm from local to global effects in single-unit recordings prompted a reappraisal of appearance in visual experiments, not just in colour, but in the perception of motion, texture, and depth as well. Gestalt ideas placed in the context of modern concepts are shown to inspire psychophysicists, neurophysiologists, and computational vision scientists alike. Feedforward, horizontal interactions, and feedback are discussed as potential neuronal mechanisms to account for phenomena such as uniform surfaces, filling-in, and grouping arising from processes beyond the classical receptive field. A look forward towards future developments in the field of figure–ground segregation (Gestalt formation) concludes the article.


2006 ◽  
Vol 96 (1) ◽  
pp. 71-85 ◽  
Author(s):  
J. Matthew Kittelberger ◽  
Bruce R. Land ◽  
Andrew H. Bass

Midbrain structures, including the periaqueductal gray (PAG), are essential nodes in vertebrate motor circuits controlling a broad range of behaviors, from locomotion to complex social behaviors such as vocalization. Few single-unit recording studies, so far all in mammals, have investigated the PAG's role in the temporal patterning of these behaviors. Midshipman fish use vocalization to signal social intent in territorial and courtship interactions. Evidence has implicated a region of their midbrain, located in a similar position as the mammalian PAG, in call production. Here, extracellular single-unit recordings of PAG neuronal activity were made during forebrain-evoked fictive vocalizations that mimic natural call types and reflect the rhythmic output of a known hindbrain–spinal pattern generator. The activity patterns of vocally active PAG neurons were mostly correlated with features related to fictive call initiation. However, spike trains in a subset of neurons predicted the duration of vocal output. Duration is the primary feature distinguishing call types used in different social contexts and these cells may play a role in directly establishing this temporal dimension of vocalization. Reversible, lidocaine inactivation experiments demonstrated the necessity of the midshipman PAG for fictive vocalization, whereas tract-tracing studies revealed the PAG's connectivity to vocal motor centers in the fore- and hindbrain comparable to that in mammals. Together, these data support the hypotheses that the midbrain PAG of teleosts plays an essential role in vocalization and is convergent in both its functional and structural organization to the PAG of mammals.


Sign in / Sign up

Export Citation Format

Share Document