scholarly journals Removal of the basal lamina in vivo reveals growth cone-basal lamina adhesive interactions and axonal tension in grasshopper embryos

1989 ◽  
Vol 9 (8) ◽  
pp. 2678-2686 ◽  
Author(s):  
ML Condic ◽  
D Bentley
Development ◽  
1982 ◽  
Vol 69 (1) ◽  
pp. 237-250
Author(s):  
Alan Roberts ◽  
J. S. H. Taylor

The formation of the sensory neurite plexus on the basal lamina of trunk skin in Xenopus embryos has been examined using the scanning electron microscope. It is formed by Rohon-Beard and extramedullary neurons which provide the first sensory innervation of the skin. By observing the distribution of growth cones on the inside surface of the skin of embryos at different ages, the development of the plexus has been followed and related to the development of sensitivity to sensory stimulation. The general features of the plexus are illustrated using a photomontage taken at × 1100. Measurements on neurites from this, and of growth cone orientations demonstrate a general ventral growth pattern with some small regional variations. Interactions of neurites within the plexus are examined. Neurites meeting at shallow angles tend to fasciculate, whilethose meeting at close to 90° tend to cross each other. Angles of incidence and separation of neurites show few angles less than 30°, which suggests that active adjustments occur after a growth cone meets or leaves another neurite. The observations allow comparison of behaviour of growing neurites in vivo and in vitro. Our evidence suggests that adhesion between growth cones and neurites is stronger than that between growth cones and the basal lamina of the skin.


Author(s):  
E. J. Kollar

The differentiation and maintenance of many specialized epithelial structures are dependent on the underlying connective tissue stroma and on an intact basal lamina. These requirements are especially stringent in the development and maintenance of the skin and oral mucosa. The keratinization patterns of thin or thick cornified layers as well as the appearance of specialized functional derivatives such as hair and teeth can be correlated with the specific source of stroma which supports these differentiated expressions.


2007 ◽  
Vol 30 (4) ◽  
pp. 77
Author(s):  
Y. Y. Chen ◽  
C. L. Hehr ◽  
K. Atkinson-Leadbeater ◽  
J. C. Hocking ◽  
S. McFarlane

Background: The growth cone interprets cues in its environment in order to reach its target. We want to identify molecules that regulate growth cone behaviour in the developing embryo. We investigated the role of A disintegrin and metalloproteinase 10 (ADAM10) in axon guidance in the developing visual system of African frog, Xenopus laevis. Methods: We first examined the expression patterns of adam10 mRNA by in situ hybridization. We then exposed the developing optic tract to an ADAM10 inhibitor, GI254023X, in vivo. Lastly, we inhibited ADAM10 function in diencephalic neuroepithelial cells (through which retinal ganglion cell (RGC) axons extend) or RGCs by electroporating or transfecting an ADAM10 dominant negative (dn-adam10). Results: We show that adam10 mRNA is expressed in the dorsal neuroepithelium over the time RGC axons extend towards their target, the optic tectum. Second, pharmacological inhibition of ADAM10 in an in vivo exposed brain preparation causes the failure of RGC axons to recognize their target at low concentrations (0.5, 1 μM), and the failure of the axons to make a caudal turn in the mid-diencephalon at higher concentration (5 μM). Thus, ADAM10 function is required for RGC axon guidance at two key guidance decisions. Finally, molecular inhibition of ADAM10 function by electroporating dn-adam10 in the brain neuroepithelium causes defects in RGC axon target recognition (57%) and/or defects in caudal turn (12%), as seen with the pharmacological inhibitor. In contrast, molecular inhibition of ADAM10 within the RGC axons has no effect. Conclusions: These data argue strongly that ADAM10 acts cell non-autonomously within the neuroepithelium to regulate the guidance of RGC axons. This study shows for the first time that a metalloproteinase acts in a cell non-autonomous fashion to direct vertebrate axon growth. It will provide important insights into candidate molecules that could be used to reform nerve connections if destroyed because of injury or disease. References Hattori M, Osterfield M, Flanagan JG. Regulated cleavage of a contact-mediated axon repellent. Science 2000; 289(5483):1360-5. Janes PW, Saha N, Barton WA, Kolev MV, Wimmer-Kleikamp SH, Nievergall E, Blobel CP, Himanen JP, Lackmann M, Nikolov DB. Adam meets Eph: an ADAM substrate recognition module acts as a molecular switch for ephrin cleavage in trans. Cell 2005; 123(2):291-304. Pan D, Rubin GM. Kuzbanian controls proteolytic processing of Notch and mediates lateral inhibition during Drosophila and vertebrate neurogenesis. Cell 1997; 90(2):271-80.


1986 ◽  
Vol 102 (3) ◽  
pp. 762-768 ◽  
Author(s):  
M Nicolet ◽  
M Pinçon-Raymond ◽  
F Rieger

After denervation in vivo, the frog cutaneus pectoris muscle can be led to degenerate by sectioning the muscle fibers on both sides of the region rich in motor endplate, leaving, 2 wk later, a muscle bridge containing the basal lamina (BL) sheaths of the muscle fibers (28). This preparation still contains various tissue remnants and some acetylcholine receptor-containing membranes. A further mild extraction by Triton X-100, a nonionic detergent, gives a pure BL sheath preparation, devoid of acetylcholine receptors. At the electron microscope level, this latter preparation is essentially composed of the muscle BL with no attached plasmic membrane and cellular component originating from Schwann cells or macrophages. Acetylcholinesterase is still present in high amounts in this BL sheath preparation. In both preparations, five major molecular forms (18, 14, 11, 6, and 3.5 S) can be identified that have either an asymmetric or a globular character. Their relative amount is found to be very similar in the BL and in the motor endplate-rich region of control muscle. Thus, observations show that all acetylcholinesterase forms can be accumulated in frog muscle BL.


1981 ◽  
Vol 89 (2) ◽  
pp. 276-283 ◽  
Author(s):  
P Ekblom ◽  
E Lehtonen ◽  
L Saxén ◽  
R Timpl

Conversion of the nephrogenic mesenchyme into epithelial tubules requires an inductive stimulus from the ureter bud. Here we show with immunofluorescence techniques that the undifferentiated mesenchyme before induction expresses uniformly type I and type III collagens. Induction both in vivo and in vitro leads to a loss of these proteins and to the appearance of basement membrane components including type IV collagen. This change correlates both spatially and temporally with the determination of the mesenchyme and precedes and morphological events. During morphogenesis, type IV collagen concentrates at the borders of the developing tubular structures where, by electron microscopy, a thin, often discontinuous basal lamina was seen to cover the first pretubular cell aggregates. Subsequently, the differentiating tubules were surrounded by a well-developed basal lamina. No loss of the interstitial collagens was seen in the metanephric mesenchyme when brought into contact with noninducing tissues or when cultured alone. Similar observations were made with nonnephrogenic mesenchyme (salivary, lung) when exposed to various heterotypic tissues known to induce tubules in the nephrogenic mesenchyme. The sequential shift in the composition of the extracellular matrix from an interstitial, mesenchymal type to a differentiated, epithelial type is so far the first detectable response of the nephrogenic mesenchyme to the tubule-inducing signal.


2021 ◽  
Vol 12 ◽  
Author(s):  
Giorgio Santoni ◽  
Consuelo Amantini ◽  
Matteo Santoni ◽  
Federica Maggi ◽  
Maria Beatrice Morelli ◽  
...  

Natural killer (NK) cells are a main subset of innate lymphocytes that contribute to host immune protection against viruses and tumors by mediating target cell killing and secreting a wide array of cytokines. Their functions are finely regulated by a balance between activating and inhibitory receptors and involve also adhesive interactions. Mechanotransduction is the process in which physical forces sensed by mechanosensors are translated into chemical signaling. Herein, we report findings on the involvement of this mechanism that is mainly mediated by actin cytoskeleton, in the regulation of NK cell adhesion, migration, tissue infiltration and functions. Actin represents the structural basis for NK cell immunological synapse (NKIS) and polarization of secretory apparatus. NK-target cell interaction involves the formation of both uropods and membrane nanotubes that allow target cell interaction over long distances. Actin retrograde flow (ARF) regulates NK cell signaling and controls the equilibrium between activation versus inhibition. Activating NKIS is associated with rapid lamellipodial ARF, whereas lower centripetal actin flow is present during inhibitory NKIS where β actin can associate with the tyrosine phosphatase SHP-1. Overall, a better knowledge of mechanotransduction might represent a future challenge: Realization of nanomaterials tailored for NK cells, would be important to translate in vitro studies in in vivo new immunotherapeutic approaches.


Development ◽  
1988 ◽  
Vol 104 (4) ◽  
pp. 601-608 ◽  
Author(s):  
H. Anderson ◽  
R.P. Tucker

During axonogenesis, contacts made by the growth cone with its substratum are important in guiding the direction of neurone outgrowth. This study examines the contacts made by the growth cones of pioneer neurones in the embryonic grasshopper limb. Individual pioneer neurones at different stages of development were injected with horseradish peroxidase and the contacts made by the filopodia at the tip of their growth cones were examined by electron microscopy. Filopodia made few contacts with mesodermal cells, some contacts with ectodermal cells and very frequent contacts with basal lamina underlying the ectoderm. Components of the basal lamina may therefore play a role in guiding pioneer axon outgrowth.


1987 ◽  
Author(s):  
G Carter ◽  
B J Gavin

It has already been demonstrated that ischaemic metabolites, which could diffuse frcm a myocardial infarct in vivo, can cause substantial damage to the endocardial endotheliun and this could predispose to mural thrombosis.To investigate the role of ischaemic metabolites in the pathogenesis of mural thrombosis, lactic acid (pH6.4) was passed through a two-way concentric catheter ligated into the left ventricle of isolated beating rat hearts that were perfused with oxygenated Krebs-Henseleit buffer (KHB) through an aortic cannula. After periods of 1, 2, and 4 hours, the lactic acid was followed for 10 minutes by 10 mis of whole blood from hepa-rinized donor rats. Ventricles were then flushed with KHB, fixed in 2.5% glutaraldehyde and post-fixed in 1% osmium tetrox-ide in cacodylate buffer.Scanning and transmission electron microscopy showed that platelets adhered to exposed basal lamina, microfibrils and collagen but not to intact or damaged endothelial cells. However densely aggregated thrombi only farmed on regions of exposed connective tissue and never on basal lamina. Fibrin, leukocytes and red blood cells were associated with these platelet thrombi. Thus lactic acid and other ischaemic metabolites which could possibly diffuse in vivo from an infarct can contribute to endocardial damage which predisposes to mural thrombosis.


2007 ◽  
Vol 28 (4) ◽  
pp. 812-823 ◽  
Author(s):  
Richard Milner ◽  
Stephanie Hung ◽  
Xiaoyun Wang ◽  
Maria Spatz ◽  
Gregory J del Zoppo

During focal cerebral ischemia, the detachment of astrocytes from the microvascular basal lamina is not completely explained by known integrin receptor expression changes. Here, the impact of experimental ischemia (oxygen—glucose deprivation (OGD)) on dystroglycan expression by murine endothelial cells and astrocytes grown on vascular matrix laminin, perlecan, or collagen and the impact of middle cerebral artery occlusion on αβ-dystroglycan within cerebral microvessels of the nonhuman primate were examined. Dystroglycan was expressed on all cerebral microvessels in cortical gray and white matter, and the striatum. Astrocyte adhesion to basal lamina proteins was managed in part by α-dystroglycan, while ischemia significantly reduced expression of dystroglycan both in vivo and in vitro. Furthermore, dystroglycan and integrin α6β4 expressions on astrocyte end-feet decreased in parallel both in vivo and in vitro. The rapid loss of astrocyte dystroglycan during OGD appears protease-dependent, involving an matrix metalloproteinase-like activity. This may explain the rapid detachment of astrocytes from the microvascular basal lamina during ischemic injury, which could contribute to significant changes in microvascular integrity.


Sign in / Sign up

Export Citation Format

Share Document