scholarly journals Complement Protein C1q Modulates Neurite Outgrowth In Vitro and Spinal Cord Axon Regeneration In Vivo

2015 ◽  
Vol 35 (10) ◽  
pp. 4332-4349 ◽  
Author(s):  
S. L. Peterson ◽  
H. X. Nguyen ◽  
O. A. Mendez ◽  
A. J. Anderson
2021 ◽  
Author(s):  
Zubair Ahmed ◽  
Sharif Alhajlah ◽  
Adam Thompson

CNS neurons are generally incapable of regenerating their axons after injury due to several intrinsic and extrinsic factors, including the presence of axon growth inhibitory molecules. One such potent inhibitor of CNS axon regeneration is Reticulon (RTN) 4 or Nogo-66. Here, we focused on RTN3 as its contribution in CNS axon regeneration is currently unknown. We found that RTN3 expression correlated with an axon regenerative phenotype in dorsal root ganglion neurons (DRGN) after injury to the dorsal columns, a model of spinal cord injury. Overexpression of RTN3 promoted disinhibited DRGN neurite outgrowth in vitro and dorsal column axon regeneration/sprouting and electrophysiological, sensory and locomotor functional recovery after injury in vivo. Knockdown of protrudin however, ablated RTN3-enhanced neurite outgrowth/axon regeneration in vitro and in vivo. Moreover, overexpression of RTN3 in a second model of CNS injury, the optic nerve crush injury model, enhanced retinal ganglion cell (RGC) survival, disinhibited neurite outgrowth in vitro and survival and axon regeneration in vivo, an effect that was also dependent on protrudin. These results demonstrate that RTN3 enhances neurite outgrowth/axon regeneration in a protrudin-dependent manner after both spinal cord and optic nerve injury.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 2015
Author(s):  
Sharif Alhajlah ◽  
Adam M Thompson ◽  
Zubair Ahmed

CNS neurons are generally incapable of regenerating their axons after injury due to several intrinsic and extrinsic factors, including the presence of axon growth inhibitory molecules. One such potent inhibitor of CNS axon regeneration is Reticulon (RTN) 4 or Nogo-A. Here, we focused on RTN3 as its contribution to CNS axon regeneration is currently unknown. We found that RTN3 expression correlated with an axon regenerative phenotype in dorsal root ganglion neurons (DRGN) after injury to the dorsal columns, a well-characterised model of spinal cord injury. Overexpression of RTN3 promoted disinhibited DRGN neurite outgrowth in vitro and dorsal column axon regeneration/sprouting and electrophysiological, sensory and locomotor functional recovery after injury in vivo. Knockdown of protrudin, however, ablated RTN3-enhanced neurite outgrowth/axon regeneration in vitro and in vivo. Moreover, overexpression of RTN3 in a second model of CNS injury, the optic nerve crush injury model, enhanced retinal ganglion cell (RGC) survival, disinhibited neurite outgrowth in vitro and survival and axon regeneration in vivo, an effect that was also dependent on protrudin. These results demonstrate that RTN3 enhances neurite outgrowth/axon regeneration in a protrudin-dependent manner after both spinal cord and optic nerve injury.


2020 ◽  
Vol 21 (19) ◽  
pp. 7031
Author(s):  
Zhuo-Hao Liu ◽  
Yin-Cheng Huang ◽  
Chang-Yi Kuo ◽  
Chao-Ying Kuo ◽  
Chieh-Yu Chin ◽  
...  

Spinal cord injury (SCI) is associated with disability and a drastic decrease in quality of life for affected individuals. Previous studies support the idea that docosahexaenoic acid (DHA)-based pharmacological approach is a promising therapeutic strategy for the management of acute SCI. We postulated that a nanostructured material for controlled delivery of DHA at the lesion site may be well suited for this purpose. Toward this end, we prepare drug-loaded fibrous mats made of core-shell nanofibers by electrospinning, which contained a polylactic acid (PLA) shell for encapsulation of DHA within the core, for delivery of DHA in situ. In vitro study confirmed sustained DHA release from PLA/DHA core-shell nanofiber membrane (CSNM) for up to 36 days, which could significantly increase neurite outgrowth from primary cortical neurons in 3 days. This is supported by the upregulation of brain-derived neurotropic factor (BDNF) and neurotrophin-3 (NT-3) neural marker genes from qRT-PCR analysis. Most importantly, the sustained release of DHA could significantly increase the neurite outgrowth length from cortical neuron cells in 7 days when co-cultured with PLA/DHA CSNM, compared with cells cultured with 3 μM DHA. From in vivo study with a SCI model created in rats, implantation of PLA/DHA CSNM could significantly improve neurological functions revealed by behavior assessment in comparison with the control (no treatment) and the PLA CSNM groups. According to histological analysis, PLA/DHA CSNM also effectively reduced neuron loss and increased serotonergic nerve sprouting. Taken together, the PLA/DHA CSNM may provide a nanostructured drug delivery system for DHA and contribute to neuroprotection and promoting neuroplasticity change following SCI.


2020 ◽  
Author(s):  
Geng Wu ◽  
Herui Liu ◽  
Mei Zhu ◽  
Yang Wu ◽  
Yunlong Bai ◽  
...  

Abstract Background: Bone marrow mesenchymal stem cells (BMSCs) transplantation offers an attractive strategy for treating multiply neurological diseases. Neuregulin1 (NRG1) plays fundamental roles in nervous system development and nerve repair. In this study, we aimed to investigate whether transplantation of NRG1-overexpressing BMSCs could alleviate spinal cord injury (SCI), and to explore the possible underling mechanisms. Methods: In vitro, NRG1-overexpressing BMSCs were constructed via plasmid transfection, and co-cultured with PC12 cells subjected to oxygen-glucose deprivation (OGD). Neurite outgrowth, cell viability and apoptosis of PC12 cells were evaluated. In vivo, BMSCs, empty-vector BMSCs and NRG1-overexpressing BMSCs were transplanted respectively into rats with SCI. Rat locomotor functions, neuronal chromatolysis, neurite outgrowth and cell apoptosis were assessed respectively. Results: The results showed that NRG1-overexpressing BMSCs in vitro significantly expedited neurite growth, elevated growth-associated protein 43 expression, enhanced cell viability and rescued ODG-induced apoptosis in PC12 cells. In vivo, transplantation of NRG1-overexpressing BMSCs notably accelerated rat motor functional recovery, attenuated neuronal chromatolysis, promoted neurite outgrowth and reduced cell apoptosis after SCI. Moreover, NRG1-overexpressing BMSCs were also able to regulate apoptosis-related proteins expression after SCI. Conclusions: These findings demonstrate that NRG1-overexpressing BMSCs can accelerate motor functional recovery by facilitating neurite outgrowth and reducing cell apoptosis after SCI, suggesting that NRG1-overexpressing BMSCs may be a promising candidate for the treatment of SCI.


2021 ◽  
Author(s):  
Min Kwon ◽  
Yeojin Seo ◽  
Hana Cho ◽  
Jihye Choi ◽  
Hyung Soon Kim ◽  
...  

Preconditioning peripheral nerve injury enhances axonal regeneration of dorsal root ganglia (DRG) neurons in part by driving pro-regenerative perineuronal macrophage activation. How these regeneration-associated macrophages influence the neuronal capacity of axon regeneration remains elusive. The present study reports that oncomodulin (ONCM) is an effector molecule derived from the regeneration-associated macrophages. ONCM was highly upregulated in DRG macrophages following preconditioning injury and necessary for the preconditioning-induced neurite outgrowth. ONCM-deficient macrophages failed to generate neurite outgrowth activity of the conditioned medium in the in vitro model of neuron-macrophage interaction. CCL2/CCR2 signaling is an upstream regulator of ONCM since the ONCM upregulation was dependent on CCR2 and CCL2 overexpression-mediated conditioning effects were attenuated in ONCM-deficient mice. Direct application of ONCM potently increased neurite outgrowth in cultured DRG neurons by activating a distinct gene set, particularly neuropeptide-related genes. AAV-mediated overexpression of ONCM construct with the signal sequence increased neuronal secretion of ONCM and enhanced neurite outgrowth in an autocrine manner. For a clinically relevant approach, we developed a nanogel-mediated system for localized delivery of recombinant ONCM to DRG tissue. Electrostatic encapsulation of ONCM by a reducible epsilon-poly(L-lysine)-nanogel (REPL-NG) resulted in a slow release of ONCM allowing sustained bioactivity. Intraganglionic injection of REPL-NG/ONCM complex achieved a remarkable long-range axonal regeneration beyond spinal cord lesion, surpassing the extent expected from the preconditioning effects. The NG-mediated ONCM delivery could be exploited as a therapeutic strategy for promoting sensory axon regeneration following spinal cord injury.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yang Wang ◽  
Xunwei Lai ◽  
Depeng Wu ◽  
Bin Liu ◽  
Nanxiang Wang ◽  
...  

Abstract Background Although exosomes, as byproducts of human umbilical cord mesenchymal stem cells (hUC-MSCs), have been demonstrated to be an effective therapy for traumatic spinal cord injury (SCI), their mechanism of action remains unclear. Methods We designed and performed this study to determine whether exosomes attenuate the lesion size of SCI by ameliorating neuronal injury induced by a secondary inflammatory storm and promoting neurite outgrowth. We determined the absolute levels of all exosomal miRNAs and investigated the potential mechanisms of action of miR-199a-3p/145-5p in inducing neurite outgrowth in vivo and in vitro. Results miR-199a-3p/145-5p, which are relatively highly expressed miRNAs in exosomes, promoted PC12 cell differentiation suppressed by lipopolysaccharide (LPS) in vitro through modulation of the NGF/TrkA pathway. We also demonstrated that Cblb was a direct target of miR-199a-3p and that Cbl was a direct target of miR-145-5p. Cblb and Cbl gene knockdown resulted in significantly decreased TrkA ubiquitination levels, subsequently activating the NGF/TrkA downstream pathways Akt and Erk. Conversely, overexpression of Cblb and Cbl was associated with significantly increased TrkA ubiquitination level, subsequently inactivating the NGF/TrkA downstream pathways Akt and Erk. Western blot and coimmunoprecipitation assays confirmed the direct interaction between TrkA and Cblb and TrkA and Cbl. In an in vivo experiment, exosomal miR-199a-3p/145-5p was found to upregulate TrkA expression at the lesion site and also promote locomotor function in SCI rats. Conclusions In summary, our study showed that exosomes transferring miR-199a-3p/145-5p into neurons in SCI rats affected TrkA ubiquitination and promoted the NGF/TrkA signaling pathway, indicating that hUC-MSC-derived exosomes may be a promising treatment strategy for SCI.


2020 ◽  
Author(s):  
Yang Wang ◽  
Xunwei Lai ◽  
Depeng Wu ◽  
Bin Liu ◽  
Nanxiang Wang ◽  
...  

Abstract Background Although exosomes, as byproducts of human umbilical cord mesenchymal stem cells (hUC-MSCs), have been demonstrated to be an effective therapy for traumatic spinal cord injury (SCI), their mechanism of action remains unclear. Methods We designed and performed this study to determine whether exosomes attenuate the lesion size of SCI by ameliorating neuronal injury induced by a secondary inflammatory storm and promoting neurite outgrowth. We determined the absolute levels of all exosomal miRNAs and investigated the potential mechanisms of action of miR-199a-3p/145-5p in inducing neurite outgrowth in vivo and in vitro. Results miR-199a-3p/145-5p, which are relatively highly expressed miRNAs in exosomes, promoted PC12 cell differentiation suppressed by lipopolysaccharide (LPS) in vitro through modulation of the NGF/TrkA pathway. We also demonstrated that Cblb was a direct target of miR-199a-3p and that Cbl was a direct target of miR-145-5p. Cblb and Cbl gene knockdown resulted in significantly decreased TrkA ubiquitination levels, subsequently activating the NGF/TrkA downstream pathways Akt and Erk. Conversely, overexpression of Cblb and Cbl was associated with significantly increased TrkA ubiquitination level, subsequently inactivating the NGF/TrkA downstream pathways Akt and Erk. Western blot and coimmunoprecipitation assays confirmed the direct interaction between TrkA and Cblb and TrkA and Cbl. In an in vivo experiment, exosomal miR-199a-3p/145-5p was found to upregulate TrkA expression at the lesion site and also promote locomotor function in SCI rats. Conclusions In summary, our study showed that exosomes transferring miR-199a-3p/145-5p into neurons in SCI rats affected TrkA ubiquitination and promoted the NGF/TrkA signaling pathway, indicating that hUC-MSC-derived exosomes may be a promising treatment strategy for SCI.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2245
Author(s):  
Jue-Zong Yeh ◽  
Ding-Han Wang ◽  
Juin-Hong Cherng ◽  
Yi-Wen Wang ◽  
Gang-Yi Fan ◽  
...  

In spinal cord injury (SCI) therapy, glial scarring formed by activated astrocytes is a primary problem that needs to be solved to enhance axonal regeneration. In this study, we developed and used a collagen scaffold for glial scar replacement to create an appropriate environment in an SCI rat model and determined whether neural plasticity can be manipulated using this approach. We used four experimental groups, as follows: SCI-collagen scaffold, SCI control, normal spinal cord-collagen scaffold, and normal control. The collagen scaffold showed excellent in vitro and in vivo biocompatibility. Immunofluorescence staining revealed increased expression of neurofilament and fibronectin and reduced expression of glial fibrillary acidic protein and anti-chondroitin sulfate in the collagen scaffold-treated SCI rats at 1 and 4 weeks post-implantation compared with that in untreated SCI control. This indicates that the collagen scaffold implantation promoted neuronal survival and axonal growth within the injured site and prevented glial scar formation by controlling astrocyte production for their normal functioning. Our study highlights the feasibility of using the collagen scaffold in SCI repair. The collagen scaffold was found to exert beneficial effects on neuronal activity and may help in manipulating synaptic plasticity, implying its great potential for clinical application in SCI.


Author(s):  
Xiaogang Chen ◽  
Lin Zhang ◽  
Fu Hua ◽  
Yu Zhuang ◽  
Huan Liu ◽  
...  

AbstractStudies have found that molecular targets that regulate tissue development are also involved in regulating tissue regeneration. Erythropoietin-producing hepatocyte A4 (EphA4) not only plays a guiding role in neurite outgrowth during the development of the central nervous system (CNS) but also induces injured axon retraction and inhibits axon regeneration after spinal cord injury (SCI). EphA4 targets several ephrin ligands (including ephrin-A and ephrin-B) and is involved in cortical cell migration, axon guidance, synapse formation and astrocyte function. However, how EphA4 affects axon regeneration after SCI remains unclear. This study focuses on the effect and mechanism of EphA4-regulated astrocyte function in neuronal regeneration after SCI. Our research found that EphA4 expression increased significantly after SCI and peaked at 3 days post-injury; accordingly, we identified the cellular localization of EphA4 and ephrin-B ligands in neurons and astrocytes after SCI. EphA4 was mainly expressed on the surface of neurons, ephrin-B1 and ephrin-B3 were mainly localized on astrocytes, and ephrin-B2 was distributed on both neurons and astrocytes. To further elucidate the effect of EphA4 on astrocyte function after SCI, we detected the related cytokines secreted by astrocytes in vivo. We found that the levels of neurotrophic factors including nerve growth factor (NGF) and basic fibroblast growth factor (bFGF) increased significantly after SCI (NGF peaked at 3 days and bFGF peaked at 7 days); the expression of laminin and fibronectin increased gradually after SCI; the expression of inflammatory factors [interleukin (IL)-1β and IL-6] increased significantly from 4 h to 7 days after SCI; and the levels of glial fibrillary acidic protein (GFAP), a marker of astrocyte activation, and chondroitin sulphate proteoglycan (CSPG), the main component of glial scars, both peaked at 7 days after SCI. Using a damaged astrocyte model in vitro, we similarly found that the levels of related cytokines increased after injury. Consequently, we observed the effect of damaged astrocytes on neurite outgrowth and regeneration, and the results showed that damaged astrocytes hindered neurite outgrowth and regeneration; however, the inhibitory effect of injured astrocytes on neurite regeneration was reduced following ephrin-B receptor knockdown or inflammatory inhibition at 24 h after astrocyte injury. Our results showed that EphA4 regulates the secretion of neurotrophic factors, adhesion molecules, inflammatory factors and glial scar formation by binding with the ligand ephrin-B located on the surface of astrocytes. EphA4 affects neurite outgrowth and regeneration after SCI by regulating astrocyte function.


Sign in / Sign up

Export Citation Format

Share Document