Isotopic Analyses by Using a Sensitive High Resolution Ion Micro-Probe (SHRIMP) for Natural Analogue Study of Oklo and Bangombé Natural Fission Reactors

1998 ◽  
Vol 82 (s1) ◽  
Author(s):  
Hiroshi Hidaka
2016 ◽  
Author(s):  
Peter M. Scott ◽  
◽  
Alex Maskell ◽  
Alex Maskell ◽  
Aleksey Sadekov ◽  
...  

Minerals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1060
Author(s):  
Hiroshi Hidaka

Isotopic analyses of elements in the natural reactor materials have often been performed to understand the distribution behaviors of the fission products and to evaluate the function of nuclear reactions since the first discovery of a natural reactor in 1972. Several types of unique microminerals, including significant amounts of fission products, have been found in and around the Oklo and the Bangombé natural reactors. In the past two decades, microbeam techniques using ion and laser probe facilities have been effectively applied for the in situ isotopic analyses of individual microminerals to investigate the migration behaviors of fissiogenic radioisotopes produced in the reactors. This paper presents a review of interpretations of the isotopic results of microminerals found in and around the natural reactors.


2002 ◽  
Vol 713 ◽  
Author(s):  
Mostafa Fayek ◽  
Keld A. Jensen ◽  
Rodney C. Ewing ◽  
Lee R. Riciputi

ABSTRACTUranium deposits can provide important information on the long-term performance of radioactive waste forms because uraninite (UO2+X) is similar to the UO2 in spent nuclear fuel. The Oklo-Okélobondo U-deposits, Gabon, serve as natural laboratory where the long-term (hundreds to billions of years) migration of uranium and other radionuclides can be studied over large spatial scales (nm to km). The natural fission reactors associated with the Oklo- Okélobondo U-deposits occur over a range of depths (100 to 400 m) and provide a unique opportunity to study the behavior of uraninite in near surface oxidizing environments versus more reducing conditions at depth. Previously, it has been difficult to constrain the timing of interaction between U-rich minerals and post-depositional fluids. These problems are magnified because uraninite is susceptible to alteration, it continuously self-anneals radiation damage, and because these processes are manifested at the nm to μm scale. Uranium, lead and oxygen isotopes can be used to study fluid-uraninite interaction, provided that the analyses are obtained on the micro-scale. Secondary ionization mass spectrometry (SIMS) permits in situ measurement of isotopic ratios with a spatial resolution on the scale of a few μm. Preliminary U-Pb results show that uraninite from all reactor zones are highly discordant with ages aaproaching the timing of fission chain reactions (1945±50 Ma) and resetting events at 1180±47 Ma and 898±46 Ma. Oxygen isotopic analyses show that uraninite from reactors that occur in near surface environments (δ18O= −14.4‰ to −8.5‰) have reacted more extensively with groundwater of meteoric origin relative to reactors located at greater depths (μ18O= −10.2‰ to −7.3‰). This study emphasizes the importance of using in situ high spatial resolution analysis techniques for natural analogue studies.


2006 ◽  
Vol 66 (1) ◽  
pp. 38-52 ◽  
Author(s):  
P. González-Sampériz ◽  
B.L. Valero-Garcés ◽  
A. Moreno ◽  
G. Jalut ◽  
J.M. García-Ruiz ◽  
...  

AbstractPalynological, sedimentological and stable isotopic analyses of carbonates and organic matter performed on the El Portalet sequence (1802 m a.s.l., 42°48′00ʺN, 0°23′52ʺW) reflect the paleoclimatic evolution and vegetation history in the central-western Spanish Pyrenees over the last 30,000 yr, and provide a high-resolution record for the late glacial period. Our results confirm previous observations that deglaciation occurred earlier in the Pyrenees than in northern European and Alpine sites and point to a glacial readvance from 22,500 to 18,000 cal yr BP, coinciding with the global last glacial maximum. The patterns shown by the new, high-resolution pollen data from this continental sequence, chronologically constrained by 13 AMS 14C dates, seem to correlate with the rapid climate changes recorded in Greenland ice cores during the last glacial–interglacial transition. Abrupt events observed in northern latitudes (Heinrich events 3 to 1, Oldest and Older Dryas stades, Intra-Allerød Cold Period, and 8200 cal yr BP event) were also identified for the first time in a lacustrine sequence from the central-western Pyrenees as cold and arid periods. The coherent response of the vegetation and the lake system to abrupt climate changes implies an efficient translation of climate variability from the North Atlantic to mid latitudes.


2007 ◽  
Vol 67 (1) ◽  
pp. 136-142 ◽  
Author(s):  
Hong Wang ◽  
Sallie E. Greenberg

AbstractThe δ13C and δ18O values of well-preserved carbonate rhizoliths (CRs) provide detailed insights into changes in the abundance of C3 and C4 plants in response to approximately decadal-scale changes in growing-season climate. We performed stable isotope analyses on 35–40 CRs sampled at 1-cm intervals from an 18-cm-thick paleosol formed in southern Illinois during Wisconsin interstadial 2. Minimum δ13C values show little variation with depth, whereas maximum values vary dramatically, and average values show noticeable variability; maximum δ18O values vary less than the minimum δ18O values. These findings indicate that a diverse and stable C3 flora with a limited number of C4 grass species prevailed during this interval, and suggest that the maximum growing-season temperatures were relatively stable, but minimum growing-season temperatures varied considerably. Two general patterns characterize the relationships between the δ13C and δ18O values obtained from the 1-cm samples. In some cases, low δ13C values correspond to low δ18O values and high δ13C values correspond to high δ18O values, suggesting that cooler growing-season temperatures favored C3 and warmer growing-season temperatures favored C4 plants. In other cases, low δ13C values correspond to high δ18O values, likely suggesting that wetter growing-season conditions were favorable to C3 plants. The high density of well-preserved CRs in this paleosol provides a unique opportunity to study detailed ecological responses to high-resolution variability in growing-season climate.


Sign in / Sign up

Export Citation Format

Share Document