Thin target cross sections for proton-induced formation of radionuclides from lead for Ep≤71 MeV

2001 ◽  
Vol 89 (11-12) ◽  
Author(s):  
J. Kuhnhenn ◽  
U. Herpers ◽  
W. Glasser ◽  
R. Michel ◽  
P. W. Kubik ◽  
...  

Some new cross sections for proton-induced radionuclide formation from lead are presented. The results extend the previous measurements from about 70 MeV down to threshold energies. Emphasis was placed upon an improved method of γ-ray spectrum analysis which proved to be reliable and effective. The new results are compared with model calculations on the basis of an improved hybrid model of preequilibrium reactions which is able to reproduce the near target products very well. But for more than 6 emitted nucleons, experimental measurements are superior.

2013 ◽  
Vol 28 (21) ◽  
pp. 1330018 ◽  
Author(s):  
ENRICO SCOMPARIN

Heavy quarkonium states are considered as one of the key observables for the study of the phase transition from a system made of hadrons towards a Quark–Gluon Plasma (QGP). In the last 25 years, experiments at CERN and Brookhaven have studied collisions of heavy ions looking for a suppression of charmonia/bottomonia, considered as a signature of the phase transition. After an introduction to the main concepts behind these studies and a short review of the SPS and RHIC results, I will describe the results obtained in Pb – Pb collisions by the ALICE experiment at the LHC. The ALICE findings will be critically compared to those of lower energy experiments, to CMS results, and to model calculations. The large cross-sections for heavy-quark production at LHC energies are expected to induce a novel production mechanism for charmonia in heavy-ion collisions, related to a recombination of [Formula: see text] pairs along the history of the collision and/or at hadronization. The occurrence of such a process at the LHC will be discussed. Finally, prospects for future measurements will be shortly addressed.


2021 ◽  
Vol 104 (1) ◽  
Author(s):  
J. L. Ullmann ◽  
T. Kawano ◽  
B. Baramsai ◽  
T. A. Bredeweg ◽  
A. Couture ◽  
...  
Keyword(s):  

1980 ◽  
Vol 33 (2) ◽  
pp. 177 ◽  
Author(s):  
FC Barker

The nonresonant part of the 7Be(p, )I)8B cross section at low energies is recalculated by means of a direct-capture potential model, using parameter values determined by fitting 7Li(n, n)7Li and 7Li(n, )I)8Li data. Standard values of the potential parameters and spectroscopic factors give values of the 7Li(n,)I) cross section that are too large. Modified values that fit the thermal-neutron capture cross section predict 7Be(p,)I) cross sections that are much less than the experimental values. Also, shell model calculations predict resonant 7Be(p,)I) cross sections that are smaller than the experimental values. It is suggested that the accepted experimental values of the 7Be(p, )I) cross section may be too large, perhaps due partly to an overlarge accepted value for the 7Li(d, p)8Li cross section, which has been used for normalization purposes. A decrease in the 7Be(p,)I) cross section would reduce the calculated detection rate of solar neutrinos and lessen the discrepancy with the measured value.


2000 ◽  
Vol 15 (25) ◽  
pp. 1567-1576
Author(s):  
NAYANTARA GUPTA ◽  
D. P. BHATTACHARYYA

The fluxes of neutrino induced muons at different zenith angles have been calculated using the high energy diffused neutrino spectra emitted from blazars. We have used the standard formulation developed by Gaisser based on charge-current interactions in rock and the QED-based energy loss formulation to estimate the spectra of neutrino induced muons. The energy spectra of neutrino flux generated from blazars has been taken from the model calculations of Protheroe. The latest charge-current and total interaction cross-sections at ultrahigh energies from Kwiecinski et al. have been used to find the probability of muon generation from neutrinos and the loss of neutrinos during propagation through the Earth. We find that our derived horizontal neutrino induced muon energy spectra expected from blazar model of Protheroe is comparable with the upper limits as predicted by SOUDAN 2 experiment.


2002 ◽  
Vol 90 (2) ◽  
Author(s):  
I. Fatima ◽  
Jamshed H. Zaidi ◽  
Shujaat Ahmad ◽  
M. S. Subhani

SummaryEmploying the activation technique in combination with radiochemical separations and high-resolution γ-ray spectroscopy fission neutron spectrum averaged cross sections were measured for several (


2020 ◽  
Vol 15 ◽  
pp. 104
Author(s):  
S. Galanopoulos ◽  
R. Vlastou ◽  
P. Demetriou ◽  
M. Kokkoris ◽  
C. T. Papadopoulos ◽  
...  

Systematic experimental and theoretical investigations of the 72,73Ge(n,p)72,73 Ga and 72,74Ge(n,α)69,71Znm reaction cross sections are presented in the energy range from thresh- old to about 17 MeV neutron energy. The above reaction cross sections were measured from 8.8 to 11.4 MeV by using the activation method, relative to the 27Al(n,α)24Na refer- ence reaction. The quasi-monoenergetic neutron beams were produced via the 2H(d,n)3He reaction at the 5 MV VdG Tandem T11/25 accelerator of NCSR “Demokritos”. Statisti- cal model calculations using the code EMPIRE-II (version 2.19) taking into consideration pre-equilibrium emission were performed on the data measured in this work as well as on data reported in literature.


2020 ◽  
pp. 148-153
Author(s):  
A.N. Vodin ◽  
O.S. Deiev ◽  
I.S. Timchenko ◽  
S.N. Olejnik ◽  
A.S. Kachan ◽  
...  

The flux-weighted averaged over the energy range of bremsstrahlung spectrum from reaction threshold up to the maximum energy of γ-ray cross-sections <σ(E)> of the 93Nb(γ,n)92mNb and 93Nb(γ,n)92tNb photonuclear reactions were determined by the gamma-activation method within the end-point bremsstrahlung energies Еmax = 36…91 MeV. Activation of 93Nb targets has been done by a bremsstrahlung flux using an electron beam at the linear accelerator LUE-40 at RDC "Accelerator" NSC KIPT. The γ-ray spectra of irradiated targets were registered using the HPGe detector with an energy resolution of 1.8 keV for the 1332 keV line 60Co. To control the bremsstrahlung flux we used natMo witness-targets and a reaction cross-section of 100Mo(γ,n)99Mo. Obtained experimental cross-sections <σ(E)> of the studied reactions are in good agreement with the theoretical values calculated within TALYS 1.9 code and the results of other authors. The averaged cross-sections <σ(E)> of the 93Nb(γ,n)92mNb and 93Nb(γ,n)92tNb reactions in the energy range 35...45 MeV and > 70 MeV were obtained for the first time.


Sign in / Sign up

Export Citation Format

Share Document