scholarly journals Ion chromatographic analysis of aqueous iodine species by conductivity and radioactivity measurements

2005 ◽  
Vol 93 (9-10) ◽  
Author(s):  
Dorothea Schumann ◽  
R. Grasser ◽  
R. Dressler ◽  
H. Bruchertseifer

SummaryA new device was developed for the identification of several iodine species in aqueous solution using ion chromatography. Iodide, iodate and molecular iodine can be determined. (The equipment allows both conductivity and radioactivity detections.) The method is applicable for the determination of radioactive iodine contaminations in the cooling water of nuclear power plants.

Environments ◽  
2019 ◽  
Vol 6 (11) ◽  
pp. 120
Author(s):  
Luca Albertone ◽  
Massimo Altavilla ◽  
Manuela Marga ◽  
Laura Porzio ◽  
Giuseppe Tozzi ◽  
...  

Arpa Piemonte has been carrying out, for a long time, controls on clearable materials from nuclear power plants to verify compliance with clearance levels set by ISIN (Ispettorato Nazionale per la Sicurezza Nucleare e la Radioprotezione - National Inspectorate for Nuclear Safety and Radiation Protection) in the technical prescriptions attached to the Ministerial Decree decommissioning authorization or into category A source authorization (higher level of associated risk, according to the categorization defined in the Italian Legislative Decree No. 230/95). After the experience undertaken at the “FN” (Fabbricazioni Nucleari) Bosco Marengo nuclear installation, some controls have been conducted at the Trino nuclear power plant “E. Fermi,” “LivaNova” nuclear installation based in Saluggia, and “EUREX” (Enriched Uranium Extraction) nuclear installation, also based in Saluggia, according to modalities that envisage, as a final control, the determination of γ-emitting radionuclides through in situ gamma spectrometry measurements. Clearance levels’ compliance verification should be performed for all radionuclides potentially present, including those that are not easily measurable (DTM, Difficult To Measure). It is therefore necessary to carry out upstream, based on a representative number of samples, those radionuclides’ determination in order to estimate scaling factors (SF), defined through the logarithmic average of the ratios between the i-th DTM radionuclide concentration and the related key nuclide. Specific radiochemistry is used for defining DTMs’ concentrations, such as Fe-55, Ni-59, Ni-63, Sr-90, Pu-238, and Pu-239/Pu-240. As a key nuclide, Co-60 was chosen for the activation products (Fe-55, Ni-59, Ni-63) and Cs-137 for fission products (Sr-90) and plutonium (Pu- 238, Pu-239/Pu-240, and Pu-241). The presence of very low radioactivity concentrations, often below the detection limits, can make it difficult to determine the related scaling factors. In this work, the results obtained and measurements’ acceptability criteria are presented, defined with ISIN, that can be used for confirming or excluding a radionuclide presence in the process of verifying clearance levels’ compliance. They are also exposed to evaluations regarding samples’ representativeness chosen for scaling factors’ assessment.


1996 ◽  
Vol 118 (3) ◽  
pp. 340-346 ◽  
Author(s):  
S. Jahanian

In pressure vessel technology or nuclear power plants, some of the mechanical components are often subjected to rapid heating. If the temperature gradient during such process is high enough, thermoelastoplastic stresses may be developed in the components. These plastic deformations are permanent and may result in the incremental deformation of the structure in the long term. Accordingly, determination of thermoelastoplastic stresses during this process is an important factor in design. In this paper, a thick-walled cylinder of nonlinear strain hardening is considered for the thermoelastoplastic analysis. The properties of the material are assumed to be temperature dependent. The cylinder is subject to rapid heating of the inside surface while the outside surface is kept at the room temperature. A quasi-static and uncoupled thermoelastoplastic analysis based on incremental theory of plasticity is developed and a numerical procedure for successive elastic approximation is presented. The thermoelastoplastic stresses developed during this process are also presented. The effect of strain hardening and temperature dependency of material on the results are investigated.


Author(s):  
Alexander Mutz ◽  
Manfred Schaaf

Abstract The Nuclear Power Plant KKG in Gösgen, Switzerland was designed according to the ASME Boiler and Pressure Vessel Code. The ASME BPVC, Section III, Appendix 11 regulates the flange calculation for class 2 and 3 components, it is also used for class 1 flanges. A standard for the determination of the required gasket characteristics is not well established which leads to a lack of clarity. As a hint different y and m values for different kinds of gasket are invented in ASME BPVC Section III [1]. The KTA 3201.2[2] and KTA 3211.2[3] regulate the calculation of bolted flanged joints in German nuclear power plants. The gasket characteristics required for these calculation methods are based on DIN 28090-1[4], they can be determined experimentally. In Europe, the calculation code EN 1591-1 [5] and the gasket characteristics according to EN 13555[6] are used for flange calculations. Because these calculation algorithms provide not only a stress analysis but also a tightness proof, it would be preferable to use them also in the NPP’s in Switzerland. Additionally, for regulatory approval also the requirements of the ASME BPVC must be fullfilled. For determining the bolting up torque moment of flanges several tables for different nominal diameters of flanges using different gaskets and different combinations of bolt and flange material were established. As leading criteria for an allowable state, the gasket surface pressure, the allowable elastic stress of the bolts and the strain in the flange should be a good and conservative basis for determining allowable torque moments. The herein established tables show only a small part according to a previous paper [7] where different calculation methods for determining bolting up moments were compared to each other. In this paper the bolting-up torque moments determined with the European standard EN 1591-1 for the flange, are assessed on the strain-based acceptance criteria in ASME BPVC, Section III, Appendices EE and FF. The assessment of the torque moment of the bolts remains elastically which should lead to a more conservative insight of the behavior of the flanges.


Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 222 ◽  
Author(s):  
Magdalena Jaremkiewicz ◽  
Dawid Taler ◽  
Piotr Dzierwa ◽  
Jan Taler

In both conventional and nuclear power plants, the high thermal load of thick-walled elements occurs during start-up and shutdown. Therefore, thermal stresses should be determined on-line during plant start-up to avoid shortening the lifetime of critical pressure elements. It is necessary to know the fluid temperature and heat transfer coefficient on the internal surface of the elements, which vary over time to determine transient temperature distribution and thermal stresses in boilers critical pressure elements. For this reason, accurate measurement of transient fluid temperature is very significant, and the correct determination of transient thermal stresses depends to a large extent on it. However, thermometers used in power plants are not able to measure the transient fluid temperature with adequate accuracy due to their massive housing and high thermal inertia. The article aims to present a new technique of measuring transient superheated steam temperature and the results of its application on a real object.


1996 ◽  
Vol 50 (3) ◽  
pp. 306-309 ◽  
Author(s):  
Wolfgang E. Ernst ◽  
Dave F. Farson ◽  
D. Jason Sames

Determination of radiation embrittlement in nuclear reactor pressure vessels is crucial to assessing safe operative lifetimes for many aging nuclear power plants. Conservative nuclear fluence estimates and trace impurity diagnosis of the weldment material are the basis of radiation embrittlement analysis. Copper is thought to be a key impurity contributing to radiation embrittlement. In this paper, the application of laser-induced breakdown spectroscopy (LIBS) as a means to assess radiation embrittlement by the detection and quantification of copper in A553b steel was investigated. A LIBS configuration completely coupled by fiber optics was attempted, but because of low laser power and fiber losses, fiber-optic delivery of the laser beam was unsuccessful. Consequently, hard optics (lenses and mirrors) were employed for laser beam delivery. The plasma emission was delivered successfully via fiber optics to the detection apparatus. Copper measurements were made from custom-fabricated steel samples. Comparison of the LIBS results to an independent atomic absorption spectrophotometry (AAS) analysis showed LIBS to be of comparable accuracy, especially in low-level copper samples.


2014 ◽  
Vol 302 (1) ◽  
pp. 41-47 ◽  
Author(s):  
T. C. Oliveira ◽  
R. P. G. Monteiro ◽  
G. F. Kastner ◽  
F. Bessueille-Barbier ◽  
A. H. Oliveira

2013 ◽  
Vol 34 (2) ◽  
pp. 253-267 ◽  
Author(s):  
Aiman Eid Al-Rawajfeh ◽  
Kamal Araj

Scaling and corrosion associated with the use of natural hard water in cooling towers during recirculation pose great problems from both economical and technical points of view, such as decreased system efficiency and increased frequency of chemical cleaning. Treated municipal wastewater (MWW) is a promising alternative to freshwater as power plant cooling system makeup water, especially in arid regions. In this work, hybrid systems of salt precipitation (SP), nanofiltration (NF) and reverse osmosis (RO) were investigated, as potential pretreatment processes for wastewater reuse as cooling water in the planned Jordan nuclear power plants. The As-Samra wastewater was used to calculate the potential of carbonate and sulfate scale formation. The results were compared to scale potentials from Palo Verde wastewater. Four cases were investigated; SP, NF, SP-RO and NF-RO. The SP pretreatment cases showed the highest monovalent to divalent ratio because of a high removal of Ca and Mg and addition of Na from the chemicals of the SP step. The NF pretreatment cases, showed the lowest calcium sulfate scale potential and this potential decreases with the % pretreatment. The scale amount increases very slightly with concentration times when the SP and NF product is desalinated by RO step.


Sign in / Sign up

Export Citation Format

Share Document