Surface complexation modelling of uranyl adsorption onto kaolinite based clay minerals using FITEQL 3.2

2006 ◽  
Vol 94 (12) ◽  
Author(s):  
Deniz Arda ◽  
Julide Hizal ◽  
Resat Apak

The aim of this study is to explain how the kaolinite-based clay minerals adsorb hexavalent uranium (uranyl ion), and to model uranyl adsorption based on inner-sphere surface complexation with the kaolinite edge hydroxyl sites and outer-sphere complexation with the permanent charge sites. The adsorption of UO

2012 ◽  
Vol 41 (43) ◽  
pp. 13388-13394 ◽  
Author(s):  
Yubing Sun ◽  
Changlun Chen ◽  
Xiaoli Tan ◽  
Dadong Shao ◽  
Jiaxing Li ◽  
...  

The adsorption mechanism between Eu(iii) and mesoporous Al2O3/EG composites shifts from outer-sphere to inner-sphere surface complexation with increasing pH.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1647 ◽  
Author(s):  
Barbora Doušová ◽  
David Koloušek ◽  
Miloslav Lhotka ◽  
Martin Keppert ◽  
Martina Urbanová ◽  
...  

Adsorption properties of waste brick dust (WBD) were studied by the removing of PbII and CsI from an aqueous system. For adsorption experiments, 0.1 M and 0.5 M aqueous solutions of Cs+ and Pb2+ and two WBD (Libochovice—LB, and Tyn nad Vltavou—TN) in the fraction below 125 µm were used. The structural and surface properties of WBD were characterized by X-ray diffraction (XRD) in combination with solid-state nuclear magnetic resonance (NMR), supplemented by scanning electron microscopy (SEM), specific surface area (SBET), total pore volume and zero point of charge (pHZPC). LB was a more amorphous material showing a better adsorption condition than that of TN. The adsorption process indicated better results for Pb2+, due to the inner-sphere surface complexation in all Pb2+ systems, supported by the formation of insoluble Pb(OH)2 precipitation on the sorbent surface. A weak adsorption of Cs+ on WBD corresponded to the non-Langmuir adsorption run followed by the outer-sphere surface complexation. The leachability of Pb2+ from saturated WBDs varied from 0.001% to 0.3%, while in the case of Cs+, 4% to 12% of the initial amount was leached. Both LB and TN met the standards for PbII adsorption, yet completely failed for any CsI removal from water systems.


RSC Advances ◽  
2015 ◽  
Vol 5 (107) ◽  
pp. 88520-88528 ◽  
Author(s):  
Zhongxiu Jin ◽  
Huiyi Gao ◽  
Linhua Hu

The ion exchange and inner-sphere surface complexation were inferred as the adsorption mechanisms of Pb(ii) on nano-TiO2.


1999 ◽  
Vol 590 ◽  
Author(s):  
E. R. Sylwester ◽  
E. A. Hudson ◽  
P. G. Allen

ABSTRACTWe have investigated the interaction of the actinyl ion, , with silica, alumina, and montmorillonite surfaces under ambient atmosphere and aqueous conditions using x-ray Absorption Fine Structure (XAFS) Spectroscopy. In acid solution (pH ∼ 3.5), the uranyl ion shows a strong interaction with the silica and alumina surfaces, and a relatively weak association with the montmorillonite surface. The extent of direct surface interaction is determined by comparing structural distortions in the equatorial bonding environment of the uranyl ion relative to the structure of a “free” uranyl aquo complex. Based on this formalism, surface complexation on silica and alumina occurs through an inner-sphere mechanism with surface oxygen atoms binding directly to the equatorial region of the uranyl ion. In contrast, sorption on montmorillonite occurs by an outer sphere mechanism in which the uranyl ion retains the simple aquo complex structure and binds to the surface via ion-exchange. In near-neutral solutions (pH ∼ 6), sorption on all of the materials is dominated by an inner-sphere mechanism. The formation of surface oligomeric species is also observed on silica and alumina.


2009 ◽  
Vol 74 (10) ◽  
pp. 1543-1557 ◽  
Author(s):  
Herman P. Van Leeuwen ◽  
Raewyn M. Town

The degree of (de)protonation of aqueous metal species has significant consequences for the kinetics of complex formation/dissociation. All protonated forms of both the ligand and the hydrated central metal ion contribute to the rate of complex formation to an extent weighted by the pertaining outer-sphere stabilities. Likewise, the lifetime of the uncomplexed metal is determined by all the various protonated ligand species. Therefore, the interfacial reaction layer thickness, μ, and the ensuing kinetic flux, Jkin, are more involved than in the conventional case. All inner-sphere complexes contribute to the overall rate of dissociation, as weighted by their respective rate constants for dissociation, kd. The presence of inner-sphere deprotonated H2O, or of outer-sphere protonated ligand, generally has a great impact on kd of the inner-sphere complex. Consequently, the overall flux can be dominated by a species that is a minor component of the bulk speciation. The concepts are shown to provide a good description of experimental stripping chronopotentiometric data for several protonated metal–ligand systems.


RSC Advances ◽  
2021 ◽  
Vol 11 (35) ◽  
pp. 21359-21366
Author(s):  
Debabrata Chatterjee ◽  
Marta Chrzanowska ◽  
Anna Katafias ◽  
Maria Oszajca ◽  
Rudi van Eldik

[RuII(edta)(L)]2–, where edta4– =ethylenediaminetetraacetate; L = pyrazine (pz) and H2O, can reduce molecular oxygen sequentially to hydrogen peroxide and further to water by involving both outer-sphere and inner-sphere electron transfer processes.


2021 ◽  
Vol 520 ◽  
pp. 120315
Author(s):  
Svetlana E. Korolenko ◽  
Aleksey S. Kubasov ◽  
Lyudmila V. Goeva ◽  
Varvara V. Avdeeva ◽  
Elena A. Malinina ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document