The Carbon and Water Footprint Assessment of Cassava-based Bioethanol Production in Thailand

2018 ◽  
Vol 13 (4) ◽  
pp. 355
Author(s):  
Armin Trujillo Mata ◽  
Guillermo Cortés Robles ◽  
Cuauhtémoc Sánchez Ramírez ◽  
Julio Blanco Fernández ◽  
Emilio Jiménez Macías

2014 ◽  
Vol 15 (2) ◽  
pp. 395-403 ◽  
Author(s):  
S. Pongpinyopap ◽  
T. Mungcharoen

In Thailand, the Alternative Energy Development Plan has set the target to increase the use of bioethanol to 9.00 million liters per day by 2021. To achieve this goal, both freshwater availability for energy crops and best practices in bioethanol production chain management are very important issues. Therefore, this study integrates water footprint technique with the linear programing approach in order to optimize the operations decision, focusing on water footprint of the bioethanol production chains from both tactical and operational levels. A cradle-to-grave approach is adopted to evaluate the water consumption and pollution in bioethanol production from sugarcane and cassava. The results show that the water footprint of bioethanol consumed in Thailand was about 3.23 × 109, 1.72 × 1010, and 2.49 × 1010 m3 per year in 2010, 2016, and 2021, respectively. The share of agriculture water consumption to the total water footprints of bioethanol was 99% and industrial water consumption was 1%. After applying the linear programing, it was found that the water footprint could be reduced by at least 53%, or 1.33 × 1010 m3, annually. The modeling approach and formulation presented could be used as a tool to reduce water consumption and provide the operation plan of bioethanol production chain.


Author(s):  
Emilio Jiménez Macías ◽  
Julio Blanco Fernández ◽  
Armin Trujillo Mata ◽  
Guillermo Cortés Robles ◽  
Cuauhtémoc Sánchez Ramírez

10.29007/w285 ◽  
2018 ◽  
Author(s):  
Shan Jiang ◽  
Lizhen Wang ◽  
Yong Zhao ◽  
Yizi Shang ◽  
Qingming Wang

China is an energy starved country that has faced a severe energy crisis for the last few decades. In response to China’s increasing dependence on non-renewable fuels, the Chinese government has discussed current and potential biomass energy resources as well as energy conversion and promotion policies. Bioethanol production has proven to be environmentally friendly and energy-efficient and is a potentially important source of renewable fuels. However, the uneven distribution of water and the implementation of the Three Red Lines water conservation policies may limit the development of bioethanol in China. From the perspective of water footprint (WF), this paper analyzes the water requirements of producing bioethanol from crop straws, and shows that water consumption in the bioethanol conversion stage is less than that in the crop growth stage; in other words, producing bioethanol from crop straws may be more water-efficient than that from grains or non-grain crop because water that would be consumed for grain growth is already being allocated to the agricultural sector. There is an abundance of crop straws of approximately 150.71 million tons that can be used for bio-ethanol production in China; if converted, 41.83 billion L ethanol would be produced annually, and an amount equal to 4 times China’s fuel ethanol production in 2014. According to a crop straws and water resource conditions, the provinces of Jilin, Shandong, Henan and Sichuan are the best for developing bioethanol from crop straws however, variations in the local availability of water resources and crop straws prevent us from drawing immediate conclusions about which crop straws would be most suitable for bioethanol production in China.


2015 ◽  
Vol 69 (5) ◽  
pp. 518-531
Author(s):  
Tokiya Yaguchi ◽  
Makoto Iwasaki ◽  
Youichiro Isono

2020 ◽  
Author(s):  
Jacqueline Tereza da Silva ◽  
Josefa Maria Felleger Garzillo ◽  
Fernanda Rauber ◽  
Alana Marielle Rodrigues Gald Kluczkovski ◽  
Ximena Schmidt ◽  
...  

2017 ◽  
Vol 1 (1) ◽  
pp. 11-25
Author(s):  
Mohammad Suhail

Every commodity or goods has intake of water i.e. either in processing or furnished stage. Thus, the present study propensities macro-level (states-level) water footprint (WFP) assessment of selected eight crops namely, Wheat, Barley, Maize, Millets, Rice, Sorghum, Soybeans and Tea. The aim of present research is to assess water use in selected crops at field level. In addition, the spatial evaluation at state level also considered as one of the significant objective to understand regional disparity and/or similarly. Methodology and approach of assessment was adopted from Water Footprint Assessment Manual (2011). Data was collected from state Agricultural Directorate, National Bureau of Soil Survey and landuse, published reports and online database such as FAOSTAT, WMO, WFN, and agriculture census. Results show that green component of WFP contributes large fraction as about 72 percent, while blue and grey component amounted of about 19 and 9 percent of the total water consumption, respectively. Moreover, spatial variability of blue, green and grey among the states assimilated by soil regime and climate barriers. Supply of blue water is high where the region imparted to semi-arid or arid land. Consequently, a balanced approach between green and blue water use has been recommended in the present study to address increasing water demand in the future.


Sign in / Sign up

Export Citation Format

Share Document