Terrestrial Vegetation of California, 3rd Edition

2007 ◽  
2019 ◽  
pp. 68-72
Author(s):  
E. A. Volkova

A monograph “Vegetation and biotopes of the “Narochansky” National Park was published in Minsk, Belarus in 2017, edited by A. V. Pugachevsky (Grummo et al., 2017). It includes the Map of terrestrial vegetation (S. 1 : 60 000) and the Map of biotopes (S. 1 : 60 000). Some small-scale maps such as the Map of changes in forest cover of the “Narochansky” National Park for the period 1985–2016, the Map of forest loss in the “Narochansky” National Park for the period 1985–2016 and a series of inventory and analytical maps on the basin of the Naroch Lake are given. This monograph can be considered as a small regional Atlas with detailed explanatory texts to the maps. It presents the experience on vegetation mapping accumulated in the Laboratory of Geobotany and Vegetation mapping of the Institute of Experimental Botany of the National Academy of Sciences of Belarus. Despite some critical comments, mainly concerning the biotope map, this publication of Belarusian geobotanists deserves an approval. They received the full answers to the questions posed: “What do we protect?” and “What is a current state of the vegetation of the National Park and the main trends of its dynamics? Cartographic design is made at a high level; the maps have both scientific and practical importance in the planning of environmental and economic activities.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Yuhao Feng ◽  
Haojie Su ◽  
Zhiyao Tang ◽  
Shaopeng Wang ◽  
Xia Zhao ◽  
...  

AbstractGlobal climate change likely alters the structure and function of vegetation and the stability of terrestrial ecosystems. It is therefore important to assess the factors controlling ecosystem resilience from local to global scales. Here we assess terrestrial vegetation resilience over the past 35 years using early warning indicators calculated from normalized difference vegetation index data. On a local scale we find that climate change reduced the resilience of ecosystems in 64.5% of the global terrestrial vegetated area. Temperature had a greater influence on vegetation resilience than precipitation, while climate mean state had a greater influence than climate variability. However, there is no evidence for decreased ecological resilience on larger scales. Instead, climate warming increased spatial asynchrony of vegetation which buffered the global-scale impacts on resilience. We suggest that the response of terrestrial ecosystem resilience to global climate change is scale-dependent and influenced by spatial asynchrony on the global scale.


2016 ◽  
Vol 13 (1) ◽  
pp. 45-62 ◽  
Author(s):  
P. Dass ◽  
M. A. Rawlins ◽  
J. S. Kimball ◽  
Y. Kim

Abstract. Terrestrial ecosystems of northern Eurasia are demonstrating an increasing gross primary productivity (GPP), yet few studies have provided definitive attribution for the changes. While prior studies point to increasing temperatures as the principle environmental control, influences from moisture and other factors are less clear. We assess how changes in temperature, precipitation, cloudiness, and forest fires individually contribute to changes in GPP derived from satellite data across northern Eurasia using a light-use- efficiency-based model, for the period 1982–2010. We find that annual satellite-derived GPP is most sensitive to the temperature, precipitation and cloudiness of summer, which is the peak of the growing season and also the period of the year when the GPP trend is maximum. Considering the regional median, the summer temperature explains as much as 37.7 % of the variation in annual GPP, while precipitation and cloudiness explain 20.7 and 19.3 %. Warming over the period analysed, even without a sustained increase in precipitation, led to a significant positive impact on GPP for 61.7 % of the region. However, a significant negative impact on GPP was also found, for 2.4 % of the region, primarily the dryer grasslands in the south-west of the study area. For this region, precipitation positively correlates with GPP, as does cloudiness. This shows that the south-western part of northern Eurasia is relatively more vulnerable to drought than other areas. While our results further advance the notion that air temperature is the dominant environmental control for recent GPP increases across northern Eurasia, the role of precipitation and cloudiness can not be ignored.


2011 ◽  
Vol 20 (4) ◽  
pp. 540 ◽  
Author(s):  
T. G. O'Connor ◽  
C. M. Mulqueeny ◽  
P. S. Goodman

Fire pattern is predicted to vary across an African savanna in accordance with spatial variation in rainfall through its effects on fuel production, vegetation type (on account of differences in fuel load and in flammability), and distribution of herbivores (because of their effects on fuel load). These predictions were examined for the 23 651-ha Mkuzi Game Reserve, KwaZulu-Natal, based on a 37-year data set. Fire return period varied from no occurrence to a fire every 1.76 years. Approximately 75% of the reserve experienced a fire approximately every 5 years, 25% every 4.1–2.2 years and less than 1% every 2 years on average. Fire return period decreased in relation to an increase in mean annual rainfall. For terrestrial vegetation types, median fire return periods decreased with increasing herbaceous biomass, from forest that did not burn to grasslands that burnt every 2.64 years. Fire was absent from some permanent wetlands but seasonal wetlands burnt every 5.29 years. Grazer biomass above 0.5 animal units ha–1 had a limiting influence on the maximum fire frequency of fire-prone vegetation types. The primary determinant of long-term spatial fire patterns is thus fuel load as determined by mean rainfall, vegetation type, and the effects of grazing herbivores.


2018 ◽  
Vol 115 (48) ◽  
pp. 12130-12135 ◽  
Author(s):  
Allison T. Karp ◽  
Anna K. Behrensmeyer ◽  
Katherine H. Freeman

That fire facilitated the late Miocene C4grassland expansion is widely suspected but poorly documented. Fire potentially tied global climate to this profound biosphere transition by serving as a regional-to-local driver of vegetation change. In modern environments, seasonal extremes in moisture amplify the occurrence of fire, disturbing forest ecosystems to create niche space for flammable grasses, which in turn provide fuel for frequent fires. On the Indian subcontinent, C4expansion was accompanied by increased seasonal extremes in rainfall (evidenced by δ18Ocarbonate), which set the stage for fuel accumulation and fire-linked clearance during wet-to-dry seasonal transitions. Here, we test the role of fire directly by examining the abundance and distribution patterns of fire-derived polycyclic aromatic hydrocarbons (PAHs) and terrestrial vegetation signatures inn-alkane carbon isotopes from paleosol samples of the Siwalik Group (Pakistan). Two million years before the C4grassland transition, fire-derived PAH concentrations increased as conifer vegetation declined, as indicated by a decrease in retene. This early increase in molecular fire signatures suggests a transition to more fire-prone vegetation such as a C3grassland and/or dry deciduous woodland. Between 8.0 and 6.0 million years ago, fire, precipitation seasonality, and C4-grass dominance increased simultaneously (within resolution) as marked by sharp increases in fire-derived PAHs, δ18Ocarbonate, and13C enrichment inn-alkanes diagnostic of C4grasses. The strong association of evidence for fire occurrence, vegetation change, and landscape opening indicates that a dynamic fire–grassland feedback system was both a necessary precondition and a driver for grassland ecology during the first emergence of C4grasslands.


2016 ◽  
Author(s):  
Alexandra-Jane Henrot ◽  
Tanja Stanelle ◽  
Sabine Schröder ◽  
Colombe Siegenthaler ◽  
Domenico Taraborrelli ◽  
...  

Abstract. A biogenic emission scheme based on the Model of Emissions of Gases and Aerosols from Nature (MEGAN) version 2.1 (Guenther et al., 2012) has been integrated into the ECHAM6-HAMMOZ chemistry climate model in order to calculate the emissions from terrestrial vegetation of 32 compounds. The estimated annual global total for the simulation period (2000–2012) is 634 Tg C yr−1. Isoprene is the main contributor to the average emission total accounting for 66 % (417 Tg C yr−1), followed by several monoterpenes (12 %), methanol (7 %), acetone (3.6 %) and ethene (3.6 %). Regionally, most of the high annual emissions are found to be associated to tropical regions and tropical vegetation types. In order to evaluate the implementation of the biogenic model in ECHAM-HAMMOZ, global and regional BVOC emissions of the reference simulation were compared to previous published experiment results with the MEGAN model. Several sensitivity simulations were performed to study the impact of different model input and parameters related to the vegetation cover and the ECHAM6 climate. BVOC emissions obtained with the biogenic model are within the range of previous published estimates. The large range of emission estimates can be attributed to the use of different input data and empirical coefficients within different setups of the MEGAN model. The biogenic model shows a high sensitivity to the changes in plant functional type (PFT) distributions and associated emission factors for most of the compounds. The global emission impact for isoprene is about −9 %, but reaches +75 % for α-pinene when switching to PFT-dependent emission factor distributions. Isoprene emissions show the highest sensitivity to soil moisture impact, with a global decrease of 12.5 % when the soil moisture activity factor is included in the model parameterization. Nudging ECHAM6 climate towards ERA-Interim reanalysis has impact on the biogenic emissions, slightly lowering the global total emissions and their interannual variability.


Sign in / Sign up

Export Citation Format

Share Document