scholarly journals A Simple Method for Finding Optimal Paths of Hot and Cold Streams inside Shell and Tube Heat Exchangers to Reduce Pumping Cost in Heat Exchanger Network Problems

2020 ◽  
Vol 34 (3) ◽  
pp. 131-148
Author(s):  
V. Sadri ◽  
Hadi Soltani ◽  
S. Rahimzadeh

In this paper, a simple method is presented for the synthesis and retrofit of heat exchanger networks (HENs) by considering pressure drop as well as finding proper path of streams inside heat exchangers (HEs) to reduce the pumping cost of network. Generally, HEN problems lead to MINLP models which have convergence difficulties due to the existence of both continuous and integer variables. In this study, instead of solving these variables simultaneously, a combination of Genetic Algorithm (GA) with Quasi Linear Programming (QLP) and Integer Linear Programming (ILP) was used for solving the problem. GA was used to find optimal HENs structure and streams paths, whereas continuous variables were solved by QLP. For the retrofit of HENs, a modified ILP model was used. Results show that the proposed method has the ability to reduce the cost of annual pumping due to considering optimal paths for streams in the HEs compared to the literature.

Author(s):  
A.A. Aleksandrov ◽  
I.V. Barmin ◽  
A.V. Zolin ◽  
V.V. Chugunkov

The paper describes the propellant cooling system using liquid nitrogen and a combination of recuperative heat exchangers, including sections of the double pipe heat exchanger and a twisted heat exchanger located in a tank with antifreeze, cooled by nitrogen gas coming out of the sections of the double pipe heat exchanger. Mathematical models of cooling processes for two variants of movement of propellant and liquid nitrogen in the channels of the double pipe heat exchanger sections are considered. Their using makes it possible to analyze the efficiency of propellant cooling operations depending on its mass, design parameters of the system tanks and heat exchangers, consumption characteristics of nitrogen and propellant, as well as to predict the required mass of liquid nitrogen and the time of propellant cooling during the operation of launching complex propellant-feed systems. Calculated dependences and simulation results of propellant and antifreeze cooling in a tank with a twisted heat exchanger are presented. The influence of variants of arranging propellant cooling processes and liquid nitrogen consumption on the efficiency of the cooling system is analyzed. Comparing to the available systems the capability of reducing the cost of liquid nitrogen are identified as well as reducing time of the propellant cooling operations by means of equipping launch complexes.


1976 ◽  
Vol 98 (3) ◽  
pp. 345-352 ◽  
Author(s):  
F. K. Moore ◽  
C. C. Ndubizu

An analysis is presented for heat exchanger area, tower exit area, and exchanger tube length and number, for heat exchangers in large dry cooling towers, having performance parameters given by powers of Reynolds number, but otherwise under very general cooling-cycle constraints. The calculation method is illustrated for a “spine-fin” heat exchanger which, in a tube size of about 3/8 in., seems capable of achieving low tower size in a practical device. Calculations, over ranges of water pumping power, approach, ITD, number of passes, tube size, tower shape (natural draft) or fan power (mechanical draft), and ambient pressure altitude are shown to be well represented by a chain of powers of these variables, and certain functions of the ratio of real to ideal tower exit area. This ratio is shown to have a best value, depending on the cost coefficients of heat exchange and exit areas, and it is pointed out that typical cost proportions lead to a fluid-mechanical “packaging” problem for the shallow heat exchangers which would be preferred.


Author(s):  
Foluso Ladeinde ◽  
Kehinde Alabi ◽  
Wenhai Li

Manifold-microchannel combinations used on heat transfer surfaces have shown the potential for superior heat transfer performance to pressure drop ratio when compared to chevron type corrugations for plate heat exchangers (PHE) [1–4]. However, compared with heat transfer enhancements such as intermating troughs and Chevron corrugations, manifold-microchannels (MM) have several times more variables that influence the heat transfer and pressure drop characteristics, including microchannel width, depth, passes, manifold depth, width, and manifold fin thickness. Previous work has reported on the effects of some of the variables, and provides some models for their effects on thermal and hydraulic performance. The current paper presents a genetic algorithm (GA)-based procedure to analyze the implicit effects of some of the manifold-microchannel variables, and compare the performance of manifold-microchannel plate heat exchangers to those using standard Chevron corrugations. The objective of the present work is to evaluate the performance of manifold-microchannel heat transfer enhancements and demonstrate the potential for using GA-based procedure to optimize the heat exchanger. This paper also presents the modifications of the standard GA algorithm when applied to the optimization of MM. The resulting GA procedure is particularly well suited to PHEs for several reasons, including the fact that it does not require continuous variables or functional dependence on the design variables. In addition, the computational effort required for the GA technique in our implementation scales linearly, with a scaling coefficient that is significantly less than one, making it economical to analyze PHEs with several variables with degrees of freedom (DOF) with respect to the fitness function. The results of optimizing a manifold-microchannel plate heat exchanger are presented, and the exchanger’s performance is compared to more conventional PHE of the same volume utilizing chevron corrugations. Finally, results from the empirical procedure presented in this paper for a manifold-microchannel are compared with experimental measurements in Andhare [5].


2021 ◽  
Author(s):  
Dawid Taler ◽  
Jan Taler ◽  
Marcin Trojan

The chapter provides an analytical mathematical model of a car radiator, which includes different heat transfer coefficients (HTCs) on the first and second row of pipes. The air-side HTCs in the first and second row of pipes in the first and second pass were calculated using the correlations for the Nusselt number, which were determined by CFD simulation using the ANSYS software. Mathematical models of two radiators were built, one of which was manufactured of round tubes and the other of oval tubes. The model permits the determination of thermal output of the first and second row of tubes in the first and second pass. The small relative differences between the thermal capacities of the heat exchanger occur for different and uniform HTCs. However, the heat flow rate in the first row is much greater than the heat flow in the second row if the air-side HTCs are different on the first and second tube row compared to a case where the HTC is uniform in the whole heat exchanger. The heat transfer rates in both radiators calculated using the developed mathematical model were compared with those determined experimentally. The method for modeling of plate-fin and tube heat exchanger (PFTHE) proposed in the paper does not require empirical correlations to calculate HTCs both on the air side and on the inner surfaces of pipes. The presented method of calculating PFTHEs, considering different air-side HTCs evaluated using CFD modeling, may considerably reduce the cost of experimental research concerning new design heat exchangers implemented in manufacturing.


2020 ◽  
Vol 4 (02) ◽  
pp. 34-45
Author(s):  
Naufal Dzikri Afifi ◽  
Ika Arum Puspita ◽  
Mohammad Deni Akbar

Shift to The Front II Komplek Sukamukti Banjaran Project is one of the projects implemented by one of the companies engaged in telecommunications. In its implementation, each project including Shift to The Front II Komplek Sukamukti Banjaran has a time limit specified in the contract. Project scheduling is an important role in predicting both the cost and time in a project. Every project should be able to complete the project before or just in the time specified in the contract. Delay in a project can be anticipated by accelerating the duration of completion by using the crashing method with the application of linear programming. Linear programming will help iteration in the calculation of crashing because if linear programming not used, iteration will be repeated. The objective function in this scheduling is to minimize the cost. This study aims to find a trade-off between the costs and the minimum time expected to complete this project. The acceleration of the duration of this study was carried out using the addition of 4 hours of overtime work, 3 hours of overtime work, 2 hours of overtime work, and 1 hour of overtime work. The normal time for this project is 35 days with a service fee of Rp. 52,335,690. From the results of the crashing analysis, the alternative chosen is to add 1 hour of overtime to 34 days with a total service cost of Rp. 52,375,492. This acceleration will affect the entire project because there are 33 different locations worked on Shift to The Front II and if all these locations can be accelerated then the duration of completion of the entire project will be effective


2017 ◽  
Vol 139 (2) ◽  
Author(s):  
Jiuyi Liu ◽  
Caifu Qian ◽  
Huifang Li

Thermal stress is an important factor influencing the strength of a heat exchanger tubesheet. Some studies have indicated that, even in floating-head or U-tube heat exchangers, the thermal stress at the tubesheet is significant in magnitude. For exploring the value, distribution, and the influence factors of the thermal stress at the tubesheet of these kind heat exchangers, a tubesheet and triangle arranged tubes with the tube diameter of 25 mm were numerically analyzed. Specifically, the thermal stress at the tubesheet center is concentrated and analyzed with changing different parameters of the tubesheet, such as the temperature difference between tube-side and shell-side fluids, tubesheet diameter, thickness, and the tube-hole area ratio. It is found that the thermal stress of the tubesheet of floating-head or U-tube heat exchanger was comparable in magnitude with that produced by pressures, and the distribution of the thermal stress depends on the tube-hole area and the temperature inside the tubes. The thermal stress at the center of the tubesheet surface is high when tube-hole area ratio is very low. And with increasing the tube-hole area ratio, the stress first decreases rapidly and then increases linearly. A formula was numerically fitted for calculating the thermal stress at the tubesheet surface center which may be useful for the strength design of the tubesheet of floating-head or U-tube heat exchangers when considering the thermal stress. Numerical tests show that the fitted formula can meet the accuracy requirements for engineering applications.


2012 ◽  
Vol 629 ◽  
pp. 699-703
Author(s):  
Chun Sheng Guo ◽  
Wen Jing Du ◽  
Lin Cheng

The entransy loss minimization approach for the heat exchanger optimization design was established by Guo Z Y; the study based Guo Z Y’s works, found relationship between the entransy loss uniformity and the heat exchanger performance and the expression of the local entransy loss rate for heat convection was derived, numerical results of the heat transfer in a chevron plate heat exchanger and helix baffle heat exchanger show that the larger entransy loss uniformity factor appear in about Re=2000 and the entransy loss uniformity factor of chevron plate heat exchanges higher than helix baffle one.


Author(s):  
H. Zabiri ◽  
V. R. Radhakrishnan ◽  
M. Ramasamy ◽  
N. M. Ramli ◽  
V. Do Thanh ◽  
...  

The Crude Preheat Train (CPT) is a set of large heat exchangers which recover the waste heat from product streams back to preheat the crude oil. The overall heat transfer coefficient in these heat exchangers may be significantly reduced due to fouling. One of the major impacts of fouling in CPT operation is the reduced heat transfer efficiency. The objective of this paper is to develop a predictive model using statistical methods which can a priori predict the rate of the fouling and the decrease in heat transfer efficiency in a heat exchanger in a crude preheat train. This predictive model will then be integrated into a preventive maintenance diagnostic tool to plan the cleaning of the heat exchanger to remove the fouling and bring back the heat exchanger efficiency to their peak values. The fouling model was developed using historical plant operating data and is based on Neural Network. Results show that the predictive model is able to predict the shell and tube outlet temperatures with excellent accuracy, where the Root Mean Square Error (RMSE) obtained is less than 1%, correlation coefficient R2 of approximately 0.98 and Correct Directional Change (CDC) values of more than 90%. A preliminary case study shows promising indication that the predictive model may be integrated into a preventive maintenance scheduling for the heat exchanger cleaning.


1964 ◽  
Vol 86 (2) ◽  
pp. 105-117 ◽  
Author(s):  
G. D. Bahnke ◽  
C. P. Howard

A numerical finite-difference method of calculating the effectiveness for the periodic-flow type heat exchanger accounting for the effect of longitudinal heat conduction in the direction of fluid flow is presented. The method considers the metal stream in crossflow with each of the gas streams as two separate but dependent heat exchangers. To accommodate the large number of divisions necessary for accuracy and extrapolation to zero element area, use was made of a general purpose digital computer. The values of the effectiveness thus obtained are good to four significant figures while those values for the conduction effect are good to three significant figures. The exchanger effectiveness and conduction effect have been evaluated over the following range of dimensionless parameters. 1.0⩾Cmin/Cmax⩾0.901.0⩽Cr/Cmin⩽∞1.0⩽NTU0⩽1001.0⩾(hA)*⩾0.251.0⩾As*⩾0.250.01⩽λ⩽0.32


Sign in / Sign up

Export Citation Format

Share Document