scholarly journals Endovascular biopsy: Technical feasibility of novel endothelial cell harvesting devices assessed in a rabbit aneurysm model

2015 ◽  
Vol 21 (1) ◽  
pp. 120-128 ◽  
Author(s):  
Daniel L Cooke ◽  
Diana Bauer ◽  
Zhengda Sun ◽  
Carol Stillson ◽  
Jeffrey Nelson ◽  
...  

The lack of safe and reliable methods to sample vascular tissue in situ limits discovery of the underlying genetic and pathophysiological mechanisms of many vascular disorders, including aneurysms. We investigated the feasibility and comparable efficacy of in vivo vascular endothelial cell sampling using a spectrum of endovascular devices. Using the rabbit elastase carotid aneurysm model we evaluated the performance of existing aneurysmal coils, intracranial stents, and stent-like devices to collect vascular endothelial cells. Additionally, we modified a subset of devices to assess the effects of alterations to coil pitch, coil wire contour, and stent surface finishing. Device performance was evaluated by (1) the number of viable endothelial cells harvested, (2) the degree of vascular wall damage analyzed using digital subtraction angiography and histopathological analysis, and (3) the ease of device navigability and retrieval. Isolated cells underwent immunohistochemical analysis to confirm cell type and viability. Coil and stent specifications, technique, and endothelial cell counts were tabulated and statistical analysis performed. Using conventional detachable-type and modified aneurysm coils 11 of 14 (78.6%) harvested endothelial cells with a mean of 7.93 (±8.33) cells/coil, while 15 of 15 (100%) conventional stents, stent-like devices and modified stents harvested endothelial cells with a mean of 831.33 (±887.73) cells/device. Coil stiffness was significantly associated with endothelial cell count in univariate analysis (p = 0.044). For stents and stent-like devices univariate analysis demonstrated stent-to-aorta diameter ratios (p = 0.001), stent length (p = 0.049), and the use of a pulling retrieval technique (p = 0.019) significantly predictive of endothelial cell counts, though a multivariate model using these variables demonstrated only the stent-to-aorta diameter ratio (p = 0.029) predictive of endothelial cell counts. Modified devices did not significantly impact harvesting. The efficacy and safety of existing aneurysm coils, intracranial stents and stent-like devices in collecting viable endothelial cells was confirmed. The technique is reproducible and the quantity and quality of collected endothelial cells is adequate for targeted genetic analysis.

2013 ◽  
Vol 19 (4) ◽  
pp. 399-408 ◽  
Author(s):  
Daniel L. Cooke ◽  
Hua Su ◽  
Zhengda Sun ◽  
Yi Guo ◽  
Diana Guo ◽  
...  

The absence of safe and reliable methods to harvest vascular tissue in situ limits the discovery of the underlying genetic and pathophysiological mechanisms of many vascular disorders such as aneurysms. We investigated the feasibility and comparable efficacy of endothelial cell collection using a spectrum of endovascular coils. Nine detachable coils ranging in k coefficient (0.15–0.24), diameter (4.0 mm–16.0 mm), and length (8.0 cm–47.0 cm) were tested in pigs. All coils were deployed and retrieved within the iliac artery of pigs (three coils/pig). Collected coils were evaluated under light microscopy. The total and endothelial cells collected by each coil were quantified. The nucleated cells were identified by Wright-Giemsa and DAPI stains. Endothelial and smooth muscle cells were identified by CD31 and α-smooth muscle actin antibody staining. Coils were deployed and retrieved without technical difficulty. Light microscopy demonstrated sheets of cellular material concentrated within the coil winds. All coils collected cellular material while five of nine (55.6%) coils retrieved endothelial cells. Coils collected mean endothelial cell counts of 89.0±101.6. Regression analysis demonstrated a positive correlation between increasing coil diameter and endothelial cell counts (R2 = 0.52, p = 0.029). Conventional detachable coils can be used to harvest endothelial cells. The number of endothelial cells collected by a coil positively correlated with its diameter. Given the widespread use of coils and their well-described safety profile their potential as an endovascular biopsy device would expand the availability of tissue for cellular and molecular analysis.


2012 ◽  
Vol 90 ◽  
pp. 0-0
Author(s):  
C NEFZAOUI ◽  
M TRONE ◽  
N CAMPOLMI ◽  
S ACQUART ◽  
C THEILLIERE ◽  
...  

1988 ◽  
Vol 60 (02) ◽  
pp. 226-229 ◽  
Author(s):  
Jerome M Teitel ◽  
Hong-Yu Ni ◽  
John J Freedman ◽  
M Bernadette Garvey

SummarySome classical hemophiliacs have a paradoxical hemostatic response to prothrombin complex concentrate (PCC). We hypothesized that vascular endothelial cells (EC) may contribute to this “factor VIII bypassing activity”. When PCC were incubated with suspensions or monolayer cultures of EC, they acquired the ability to partially bypass the defect of factor VIII deficient plasma. This factor VIII bypassing activity distributed with EC and not with the supernatant PCC, and was not a general property of intravascular cells. The effect of PCC was even more dramatic on fixed EC monolayers, which became procoagulant after incubation with PCC. The time courses of association and dissociation of the PCC-derived factor VIII bypassing activity of fixed and viable EC monolayers were both rapid. We conclude that EC may provide a privileged site for sequestration of constituents of PCC which express coagulant activity and which bypass the abnormality of factor VIII deficient plasma.


1995 ◽  
Vol 74 (04) ◽  
pp. 1045-1049 ◽  
Author(s):  
P Butthep ◽  
A Bunyaratvej ◽  
Y Funahara ◽  
H Kitaguchi ◽  
S Fucharoen ◽  
...  

SummaryAn increased level of plasma thrombomodulin (TM) in α- and β- thalassaemia was demonstrated using an enzyme-linked immunosorbent assay (ELISA). Nonsplenectomized patients with β-thalassaemia/ haemoglobin E (BE) had higher levels of TM than splenectomized cases (BE-S). Patients with leg ulcers (BE-LU) were found to have the highest increase in TM level. Appearance of larger platelets in all types of thalassaemic blood was observed indicating an increase in the number of younger platelets. These data indicate that injury of vascular endothelial cells is present in thalassaemic patients.


Nanoscale ◽  
2021 ◽  
Author(s):  
Yuan Huang ◽  
Suxiao Wang ◽  
Jin-Zhi Zhang ◽  
Hang-Xing Wang ◽  
Qichao Zou ◽  
...  

Nanomaterial induced endothelial cells leakiness (NanoEL) is caused because nanomaterials enter the interstitial space of endothelial cells and disrupt the endothelial cell-cell interactions by interacting with vascular endothelial cadherin (VE-cad)....


2001 ◽  
Vol 168 (3) ◽  
pp. 409-416 ◽  
Author(s):  
SE Dickson ◽  
R Bicknell ◽  
HM Fraser

Vascular endothelial growth factor (VEGF) is essential for the angiogenesis required for the formation of the corpus luteum; however, its role in ongoing luteal angiogenesis and in the maintenance of the established vascular network is unknown. The aim of this study was to determine whether VEGF inhibition could intervene in ongoing luteal angiogenesis using immunoneutralisation of VEGF starting in the mid-luteal phase. In addition, the effects on endothelial cell survival and the recruitment of periendothelial support cells were examined. Treatment with a monoclonal antibody to VEGF, or mouse gamma globulin for control animals, commenced on day 7 after ovulation and continued for 3 days. Bromodeoxyuridine (BrdU), used to label proliferating cells to obtain a proliferation index, was administered one hour before collecting ovaries from control and treated animals. Ovarian sections were stained using antibodies to BrdU, the endothelial cell marker, CD31, the pericyte marker, alpha-smooth muscle actin, and 3' end DNA fragments as a marker for apoptosis. VEGF immunoneutralisation significantly suppressed endothelial cell proliferation and the area occupied by endothelial cells while increasing pericyte coverage and the incidence of endothelial cell apoptosis. Luteal function was markedly compromised by anti-VEGF treatment as judged by a 50% reduction in plasma progesterone concentration. It is concluded that ongoing angiogenesis in the mid-luteal phase is primarily driven by VEGF, and that a proportion of endothelial cells of the mid-luteal phase vasculature are dependent on VEGF support.


2011 ◽  
Vol 151 (3) ◽  
pp. 488-493 ◽  
Author(s):  
Ahmad Kheirkhah ◽  
Ali Izadi ◽  
Mohammad Yaser Kiarudi ◽  
Rahman Nazari ◽  
Hesam Hashemian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document