scholarly journals Calculating the carbon-dioxide balance in the cooling systems of large power plants

Author(s):  
V.A. Kishnevsky ◽  
◽  
V.V. Chichenin ◽  
V.G. Ahrameev ◽  
◽  
...  
2019 ◽  
Vol 2 (3) ◽  
pp. 141-151
Author(s):  
O. E. Gnezdova ◽  
E. S. Chugunkova

Introduction: greenhouses need microclimate control systems to grow agricultural crops. The method of carbon dioxide injection, which is currently used by agricultural companies, causes particular problems. Co-generation power plants may boost the greenhouse efficiency, as they are capable of producing electric energy, heat and cold, as well as carbon dioxide designated for greenhouse plants.Methods: the co-authors provide their estimates of the future gas/electricity rates growth in the short term; they have made a breakdown of the costs of greenhouse products, and they have also compiled the diagrams describing electricity consumption in case of traditional and non-traditional patterns of power supply; they also provide a power distribution pattern typical for greenhouse businesses, as well as the structure and the principle of operation of a co-generation unit used by a greenhouse facility.Results and discussion: the co-authors highlight the strengths of co-generation units used by greenhouse facilities. They have also identified the biological features of carbon dioxide generation and consumption, and they have listed the consequences of using carbon dioxide to enrich vegetable crops.Conclusion: the co-authors have formulated the expediency of using co-generation power plants as part of power generation facilities that serve greenhouses.


1983 ◽  
Vol 15 (10) ◽  
pp. 135-147
Author(s):  
Maurice A Shapiro ◽  
Meryl H Karol ◽  
Georg Keleti ◽  
Jan L Sykora ◽  
A J Martinez

It has been shown that several pathogenic organisms may be frequently found in thermal effluents and cooling systems of coal fired power plants. One of them is pathogenic Naegleria fowleri, the causative agent of an acute fatal human disease - primary amoebic meningoencephalitis (PAM). In our study two out of eight power plants investigated, harbored pathogenic N. fowleri in heated water or cooling towers. The occurrence of this organism was related to elevated temperatures. No significant correlation was found for other biological and chemical parameters. In addition, pathogenic Acanthamoeba which causes granulomatous amoebic encephalitis (GAE) was found in the tested heated effluents from coal fired power plants. Non-pathogenic strains of N. fowleri as well as other free-living and “harmless” amoebae were also very abundant in effluents from all investigated coal fired power plants and cooling towers. It has been reported that several species of nonpathogenic amoebae were isolated from humidifiers and air conditioning systems. Serological testing of symptomatic human subjects has indicated that these organisms may be one of the causative agents of hypersensitivity pneumonitis. An experimental study performed in our laboratory involved testing of guinea pigs sensitized by injection of axenic, non-pathogenic N. gruberi. Delayed onset skin reactivity was apparent in all animals injected with the antigen. Antibodies were detected in all sensitized animals. Bronchial provocation challenge employed to investigate pulmonary hypersensitivity was also used, and yielded positive results. All the sensitized animals displayed delayed onset respiratory responses. The results of this study indicate that not only pathogenic but also non-pathogenic free-living amoebae may be important causative agents of human disease. The occurrence of these organisms in cooling systems from coal fired power plants indicates that these facilities may be an important source of infection.


Author(s):  
Michael O’Sullivan ◽  
Michael Gravatt ◽  
Joris Popineau ◽  
John O’Sullivan ◽  
Warren Mannington ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1900
Author(s):  
Vitor Augusto Machado Jorge ◽  
Pedro Daniel de Cerqueira Gava ◽  
Juan Ramon Belchior de França Silva ◽  
Thais Mancilha ◽  
Waldir Vieira ◽  
...  

Hydroelectric power plants often make use of tunnels to redirect the flow of water to the plant power house. Such tunnels are often flooded and can span considerable distances. Periodical inspections of such tunnels are highly desirable since a tunnel collapse will be catastrophic, disrupting the power plant operation. In many cases, the use of Unmanned Underwater Vehicles (UUVs) equipped with mechanical profiling sonars is a suitable and affordable way to gather data to generate 3D mapping of flooded tunnels. In this paper, we study the resolution of 3D tunnel maps generated by one or more mechanical profiling sonars working in tandem, considering synchronization and occlusion problems. The article derives the analytical equations to estimate the sampling of the underwater tunnels using mechanical profiling sonars (scanning sonars). Experiments in a simulated environment using up to four sensors simultaneously are presented. We also report experimental results obtained by a UUV inside a large power plant tunnel, together with a first map of this environment using a single sonar sensor.


2016 ◽  
Vol 139 (3) ◽  
Author(s):  
Bilal Hassan ◽  
Oghare Victor Ogidiama ◽  
Mohammed N. Khan ◽  
Tariq Shamim

A thermodynamic model and parametric analysis of a natural gas-fired power plant with carbon dioxide (CO2) capture using multistage chemical looping combustion (CLC) are presented. CLC is an innovative concept and an attractive option to capture CO2 with a significantly lower energy penalty than other carbon-capture technologies. The principal idea behind CLC is to split the combustion process into two separate steps (redox reactions) carried out in two separate reactors: an oxidation reaction and a reduction reaction, by introducing a suitable metal oxide which acts as an oxygen carrier (OC) that circulates between the two reactors. In this study, an Aspen Plus model was developed by employing the conservation of mass and energy for all components of the CLC system. In the analysis, equilibrium-based thermodynamic reactions with no OC deactivation were considered. The model was employed to investigate the effect of various key operating parameters such as air, fuel, and OC mass flow rates, operating pressure, and waste heat recovery on the performance of a natural gas-fired power plant with multistage CLC. The results of these parameters on the plant's thermal and exergetic efficiencies are presented. Based on the lower heating value, the analysis shows a thermal efficiency gain of more than 6 percentage points for CLC-integrated natural gas power plants compared to similar power plants with pre- or post-combustion CO2 capture technologies.


2013 ◽  
Vol 856 ◽  
pp. 338-342 ◽  
Author(s):  
Chin Yee Sing ◽  
Mohd Shiraz Aris

Burning fossil fuel like coal in power plants released carbon dioxide that had been absorbed millions of years ago. Unfortunately, excessive carbon dioxide emission had led to global warming. Malaysia, as one of the major exporters of palm oil, has abundant oil palm mill residues that could be converted into value-added product like biomass fuel briquettes. Fuel briquette with palm kernel shell and palm mesocarp fibre as its main ingredients showed satisfactory fuel characteristics and mechanical properties as a pure biomass fuel briquette. The effects of adding some coal of higher calorific value to the satisfactory biomass fuel briquette were focused in this study. Various coal-biomass fuel blends were used, ranging from 0wt% coal to 50wt% coal. The fuel properties and mechanical properties of pure biomass briquette and briquettes with different amount of coal added were compared experimentally. From the fuel properties tests, it was found that as the coal content in the briquette was increased, the carbon content and calorific value increased. Mechanical property tests on the fuel briquettes showed a mixture of results, with some favored higher portion of coal in the briquette for better handling, transport and storage properties while some favored greater amount of biomass.


2012 ◽  
Vol 2 (8) ◽  
pp. 1-9
Author(s):  
Saroj Koul

Subject area Operations and human resourcing. Study level/applicability This case study is intended for use in graduate, executive level management and doctoral programs. The case study illustrates a combined IT and HR driven participative management control system in a flexible organization structure. It is intended for a class discussion rather than to illustrate either effective or ineffective handling of an administrative situation. Case overview The case describes the situation of managing unskilled workforces (≥14,000 workers) during the construction phase of the 4 × 250MW power plants both for purposes of turnout as well as due compensation, in the event of an accident. The approved labour forces appointed for 45 × 8 h. Man-days after a rigorous fitness test and approvals of the safety officer are allocated housing and other necessary amenities and a commensurate compensation system. Expected learning outcomes These include: illustrating typical organizational responsibility structure at a construction site of a large power plant; illustrating the planning and administrative control mechanism in implementing strategy at a construction site of a large power plant; offering students the opportunity to understand and view a typical operational (project) structure; allowing students to speculate adaptations in the wake of an ever-changing business and company environment; and providing an opportunity to introduce a power scenario in India, Indian labour laws and radio frequency identification technology and to relate this to the case in context. Supplementary materials Teaching notes are available; please consult your librarian for access.


Author(s):  
Nicola Palestra ◽  
Giovanna Barigozzi ◽  
Antonio Perdichizzi

The paper presents the results of an investigation on inlet air cooling systems based on cool thermal storage, applied to combined cycle power plants. Such systems provide a significant increase of electric energy production in the peak hours; the charge of the cool thermal storage is performed instead during the night time. The inlet air cooling system also allows the plant to reduce power output dependence on ambient conditions. A 127MW combined cycle power plant operating in the Italian scenario is the object of this investigation. Two different technologies for cool thermal storage have been considered: ice harvester and stratified chilled water. To evaluate the performance of the combined cycle under different operating conditions, inlet cooling systems have been simulated with an in-house developed computational code. An economical analysis has been then performed. Different plant location sites have been considered, with the purpose to weigh up the influence of climatic conditions. Finally, a parametric analysis has been carried out in order to investigate how a variation of the thermal storage size affects the combined cycle performances and the investment profitability. It was found that both cool thermal storage technologies considered perform similarly in terms of gross extra production of energy. Despite this, the ice harvester shows higher parasitic load due to chillers consumptions. Warmer climates of the plant site resulted in a greater increase in the amount of operational hours than power output augmentation; investment profitability is different as well. Results of parametric analysis showed how important the size of inlet cooling storage may be for economical results.


Sign in / Sign up

Export Citation Format

Share Document