scholarly journals Nanofluid-based Minimum Quantity Lubrication (MQL) Face Milling of Inconel 625

Author(s):  
P. Singh ◽  
J. S. Dureja ◽  
H. Singh ◽  
M. S. Bhatti

Machining with minimum quantity lubrication (MQL) has gained widespread attention to boost machining performance of difficult to machine materials such as Ni-Cr alloys, especially to reduce the negative impact of conventional flooded machining on environment and machine operator health. The present study is aimed to evaluate MQL face milling performance of Inconel 625 using nano cutting fluid based on vegetable oil mixed with multi-walled carbon nanotubes (MWCNT). Experiments were designed with 2-level factorial design methodology. ANOVA test and desirability optimisation method were employed to arrive at optimised milling parameters to achieve minimum tool wear and machined surface quality. Experiments were performed under nanoparticles based minimum quantity lubrication (NMQL) conditions using different weight concentrations of MWCNT in base oil: 0.50, 0.75, 1, 1.25 and 1.5 wt. %; and pure MQL environment (without nanoparticles). The optimal MQL milling parameters found are cutting speed: 47 m/min, table feed rate: 0.05 mm/tooth and depth of cut: 0.20 mm. The results revealed improvement in the surface finish (Ra) by 17.33% and reduction in tool flank wear (VB) by 11.48 % under NMQL face milling of Inconel 625 with 1% weight concentration of MWCNT in base oil compared to pure MQL machining conditions.

Author(s):  
Arul Kulandaivel ◽  
Senthil Kumar Santhanam

Abstract Turning operation is one of the most commonly used machining processes. However, turning of high strength materials involves high heat generation which, in turn, results in undesirable characteristics such as increased tool wear, irregular chip formation, minor variations in physical properties etc. In order to overcome these, synthetic coolants are used and supplied in excess quantities (flood type). The handling and disposal of excess coolants are tedious and relatively expensive. In this proposed work, Water Soluble Cutting Oil suspended with nanoparticles (Graphene) is used in comparatively less quantities using Minimum quantity lubrication (MQL) method to improve the quality of machining. The testing was done on Turning operation of Monel K500 considering the various parameters such as the cutting speed, feed and depth of cut for obtaining a surface roughness of 0.462μm and cutting tool temperature of 55°C for MQL-GO (Graphene oxide) process.


2009 ◽  
Vol 626-627 ◽  
pp. 387-392 ◽  
Author(s):  
L.T. Yan ◽  
Song Mei Yuan ◽  
Qiang Liu

The cutting performance (tool wear, surface roughness of machined work-piece and chip formation)of wet, dry and Minimum Quantity Lubrication (MQL) machining when milling of high strength steel (PCrNi2Mo) using cemented carbide tools under different (cutting speed, depth of cut, feed rate) was analyzed. The experimental results showed that as the cutting speed, depth of cut and feed rate changed, MQL conditions provided the lowest flank wear and the highest surface quality. Chip formation produced under MQL conditions become more favorable in terms of color and shape. The results obtained prove the potential of using MQL technique in the milling process of high strength steel (PCrNi2Mo) for high cutting speed, feed rate and depth of cut.


Rekayasa ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 125-129
Author(s):  
Dicky Aprilian Nugraha ◽  
Rika Dwi Hidayatul Qoryah ◽  
Mahros Darsin

Sebuah alat kendali semprotan cutting fluid pada minimum quantity lubrication (MQL) telah berhasil dibuat. Alat yang bekerja dengan sistem Arduino ini dihubungkan dengan sensor suhu yang diletakkan pada sisi pahat dan berhasil mengendalikan kapan cutting fluid harus disemprotkan dan kapan harus berhenti. Tujuan dari penelitian ini adalah untuk mempelajari efek penggunaan alat kendali ini terhadap kekasaran permukaan pada pembubutan baja AISI 4340. Metode Taguchi L9 digunakan untuk menyusun desain eksperimen dengan variasi parameter: metode pemberian cutting fluid, kedalaman permukaan dan komposisi campuran cutting fluid. Pahat sisipan berbahan karbida digunakan untuk memesin lurus dan roughness tester digunakan untuk mengukur kekesaran permukaan hasil pembubutan. Analisis S/N ratio dilanjutkan dengan analisis varians (ANAVA) membuktikan bahwa metode MQL yang dilengkapi sistem kendali ini mampu menghasilkan rata-rata permukaan paling halus dibandingkan metode lain. Nilai kekasaran optimum sebesar 1,941 µm diperoleh pada kombinasi permesinan dengan MQL dengan sistem kendali, depth of cut 2,0 mm, dan komposisi air terhadap minyak pada cutting fluid 7:3Effect of Minimum Quantity Lubrication (MQL) Method on Surface RoughnessA device to control the spraying of cutting fluid in minimum quantity lubrication (MQL) has been initiated. This device was programmed with Ardunio and connected to a thermal sensor which is stick on the flank face of the tool. It succeeded in controlling when the cutting fluid should be sprayed and stopped. This research aim is to investigate the effect of using this device to the machined surface roughness. The Taguchi method L9 was used for designing the experiments. Variations were made on the method of applying cutting flood, depth of cut, and cutting fluid composition. Carbide insert tools were used and roughness tester was employed to measure the machined surface roughness. Analysis of S/N ratio following with analysis of variance (ANOVA) revealed that the controlled MQL cooling application results in the minimum surface roughness. The optimum surface roughness would be achieved when using MQL with temperature controller, depth of cut of 2.0 mm, and composition between water and oil for cutting fluid of 7:3.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3828 ◽  
Author(s):  
Nelson Wilson Paschoalinoto ◽  
Gilmar Ferreira Batalha ◽  
Ed Claudio Bordinassi ◽  
Jorge Antonio Giles Ferrer ◽  
Aderval Ferreira de Lima Filho ◽  
...  

This paper presents a study of the Ti-6Al-4V alloy milling under different lubrication conditions, using the minimum quantity lubrication approach. The chosen material is widely used in the industry due to its properties, although they present difficulties in terms of their machinability. A minimum quantity lubrication (MQL) prototype valve was built for this purpose, and machining followed a previously defined experimental design with three lubrication strategies. Speed, feed rate, and the depth of cut were considered as independent variables. As design-dependent variables, cutting forces, torque, and roughness were considered. The desirability optimization function was used in order to obtain the best input data indications, in order to minimize cutting and roughness efforts. Supervised artificial neural networks of the multilayer perceptron type were created and tested, and their responses were compared statistically to the results of the factorial design. It was noted that the variables that most influenced the machining-dependent variables were the feed rate and the depth of cut. A lower roughness value was achieved with MQL only with the use of cutting fluid with graphite. Statistical analysis demonstrated that artificial neural network and the experimental design predict similar results.


Minimum quantity lubrication (MQL) is currently a widely used lubricating technique during machining, in which minimum amount of lubricant in the form of mist is delivered to the machining interface, thus helps to reduce the negative effects caused to the environment and human health. Further, to enhance the productivity of machining process specifically for hard-to-cut materials, nano cutting fluid (suitably mixed nano materials with conventional cutting fluid) is used as an alternative method to conventional lubrication (wet) in MQL. In the current paper, h-BN nano cutting fluid was formulated with 0.1% vol. concentration of h-BN in conventional cutting fluid for NF-MQL technique and its tribological effects on machining performance of Inconel 625 were compared with other lubricating conditions (dry, wet, MQL conventional). The tribological effects were analyzed in terms of tool wear analysis, chip morphology along with statistical analysis for surface roughness and cutting forces. The optimal input machining parameters for experiments were defined by the use of Taguchi and Grey relational based multi response optimization technique. The tribological effects of h-BN NF-MQL shows that it is a viable and sustainable option for improving the machining performance of hard- to- cut material like Inconel 625


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7207
Author(s):  
Vineet Dubey ◽  
Anuj Kumar Sharma ◽  
Prameet Vats ◽  
Danil Yurievich Pimenov ◽  
Khaled Giasin ◽  
...  

The enormous use of cutting fluid in machining leads to an increase in machining costs, along with different health hazards. Cutting fluid can be used efficiently using the MQL (minimum quantity lubrication) method, which aids in improving the machining performance. This paper contains multiple responses, namely, force, surface roughness, and temperature, so there arises a need for a multicriteria optimization technique. Therefore, in this paper, multiobjective optimization based on ratio analysis (MOORA), VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR), and technique for order of preference by similarity to ideal solution (TOPSIS) are used to solve different multiobjective problems, and response surface methodology is also used for optimization and to validate the results obtained by multicriterion decision-making technique (MCDM) techniques. The design of the experiment is based on the Box–Behnken technique, which used four input parameters: feed rate, depth of cut, cutting speed, and nanofluid concentration, respectively. The experiments were performed on AISI 304 steel in turning with minimum quantity lubrication (MQL) and found that the use of hybrid nanofluid (Alumina–Graphene) reduces response parameters by approximately 13% in forces, 31% in surface roughness, and 14% in temperature, as compared to Alumina nanofluid. The response parameters are analyzed using analysis of variance (ANOVA), where the depth of cut and feed rate showed a major impact on response parameters. After using all three MCDM techniques, it was found that, at fixed weight factor with each MCDM technique, a similar process parameter was achieved (velocity of 90 m/min, feed of 0.08 mm/min, depth of cut of 0.6 mm, and nanoparticle concentration of 1.5%, respectively) for optimum response. The above stated multicriterion techniques employed in this work aid decision makers in selecting optimum parameters depending upon the desired targets. Thus, this work is a novel approach to studying the effectiveness of hybrid nanofluids in the machining of AISI 304 steel using MCDM techniques.


2020 ◽  
Vol 8 (1) ◽  
pp. 256-269
Author(s):  
Rika Dwi Hidayatul Qoryah ◽  
Agil Widhy Azizi ◽  
Mahros Darsin

The cutting fluid is one of the essential factors in machining to increase machinability. The issuance of ISO 14000 about reducing the use of cutting fluid for its danger for operator and environment has encouraged many researchers to find ways to minimize its use. The Minimum Quantity Lubrication (MQL) is an answer to it.  To further reduce the use of cutting fluid, a device that complies with MQL criteria for controlling the spray based on the tool temperature has successfully designed. This paper is discussing the effect of applying this device to the chips formation. The experiments were on turning of AISI 4340 using carbide tools. The Taguchi method L9 used to design the experiments. The variations made on the method of applying the cutting fluid, depth of cut, and cutting fluid composition. The chips formation was calculated based on the value of the degree of serration. Analysis of the S/N ratio, followed by ANOVA, revealed that the cutting fluids application method is the least factor affecting the chips formation. In contrast, the depth of cut influences the chips formation by 75 per cent more. The highest degree of serration achieved when applying the combination of depth of cut of 1.8 mm, the composition of 5:5, and flood method of applying cutting fluid.


2019 ◽  
Vol 947 ◽  
pp. 160-166
Author(s):  
Nutrada Khumjeen ◽  
Somkiat Tangjitsitcharoen

The turning Process is the main processes used in automotive parts from more productivity, it requires the cutting velocity and feed rate high. And from those cutting, it causes high temperatures on cutting and a tool life of cutting tools decreased. Therefore using of cutting fluid (Coolant) is one of the commonly used methods to reduce temperatures that occur while cutting, reducing the wear of cutting tool and helps extend the tool life of the cutting tool. However, cutting fluid it's not always a good way, from the high cost and environmental problems issues. Using the MQL technique is one of the alternatives that using more nowadays to solve the above mentioned problems. This research proposed a MQL technique substitution of cutting fluid that using in the current process by applying in order to obtain the proper cutting condition for carbon steel material grade SAPH370 with the carbide cutting tool. The cutting conditions will acceptable from the minimum quantity of lubricant and the maximum of tool life of cutting tool under surface roughness (Ra) is less than 1.2 μm. The proper cutting condition determined at a feed rate of 0.10 mm/rev, a cutting speed of 300 m/min and a flow rate of 5ml/hr.


Sign in / Sign up

Export Citation Format

Share Document