scholarly journals Effects of Post-Injection Characteristics on the Combustion, Emission, and Performance in a Diesel-Syngas Reactivity Controlled Compression Ignition Engine

Author(s):  
M. J. Noroozi ◽  
M. Seddiq

This paper presents a numerical investigation of the separate effects of post-injection characteristics in a heavy-duty turbocharged direct injection diesel engine under pure diesel combustion (PDC) and diesel-syngas combustion (DSC) operating conditions. Converge CFD code was used coupled with a detailed n-heptane/toluene/PAH chemical kinetic mechanism (consists of 71 species and 360 reactions) for diesel-syngas dual-fuel combustion simulation. A total of 36 strategies based on the post-injection characteristics (post-injection timing, fuel quantity, spraying pressure, and main-post dwell time) on the combustion characteristics, exhaust gas emissions, and engine performance under PDC and DSC conditions were investigated. Numerical achievements revealed that 40% substitution of diesel fuel with syngas significantly decreased particulate matter emission and enhanced the indicated thermal efficiency (ITE), compared to the baseline PDC case. However, carbon monoxide noticeably increased. In addition, retarding the post-injection timing prolonged the combustion duration and also reduced the nitrogen oxides emissions and ITE. By increasing the post-injection quantity up to 15%, the combustion process deteriorated, and carbon-based emissions such as particulate matter, carbon monoxide, and unburnt hydro-carbon in the exhaust gases increased under PDC and DSC conditions. Furthermore, increasing post-injection pressure (PIP) from 1000 to 1450 bar under both PDC and DSC conditions led to higher flame temperature, and as a result, the heat release rate peak point and temperature peak point for the second combustion event increased. However, at a PIP of 1600 bar, the ITE deteriorated under PDC and DSC operating cases.

2015 ◽  
Vol 19 (6) ◽  
pp. 1943-1957
Author(s):  
Simona Merola ◽  
Luca Marchitto ◽  
Cinzia Tornatore ◽  
Gerardo Valentino

Combustion process was studied from the injection until the late combustion phase in an high swirl optically accessible combustion bowl connected to a single cylinder 2-stroke high pressure common rail compression ignition engine. Commercial diesel and blends of diesel and n-butanol (20%: BU20 and 40%: BU40) were used for the experiments. A pilot plus main injection strategy was investigated fixing the injection pressure and fuel mass injected per stroke. Two main injection timings and different pilot-main dwell times were explored achieving for any strategy a mixing controlled combustion. Advancing the main injection start, an increase in net engine working cycle (>40%) together with a strong smoke number decrease (>80%) and NOx concentration increase (@50%) were measured for all pilot injection timings. Compared to diesel fuel, butanol induced a decrease in soot emission and an increase in net engine working area when butanol ratio increased in the blend. A noticeable increase in NOx was detected at the exhaust for BU40 with a slight effect of the dwell-time. Spectroscopic investigations confirmed the delayed auto-ignition (~60 ms) of the pilot injection for BU40 compared to diesel. The spectral features for the different fuels were comparable at the start of combustion process, but they evolved in different ways. Broadband signal caused by soot emission, was lower for BU40 than diesel. Different balance of the bands at 309 and 282 nm, due to different OH transitions, were detected between the two fuels. The ratio of these intensities was used to follow flame temperature evolution.


Author(s):  
Khanh Cung ◽  
Toby Rockstroh ◽  
Stephen Ciatti ◽  
William Cannella ◽  
S. Scott Goldsborough

Unlike homogeneous charge compression ignition (HCCI) that has the complexity in controlling the start of combustion event, partially premixed combustion (PPC) provides the flexibility of defining the ignition timing and combustion phasing with respect to the time of injection. In PPC, the stratification of the charge can be influenced by a variety of methods such as number of injections (single or multiple injections), injection pressure, injection timing (early to near TDC injection), intake boost pressure, or combination of several factors. The current study investigates the effect of these factors when testing two gasoline-like fuels of different reactivity (defined by Research Octane Number or RON) in a 1.9-L inline 4-cylinder diesel engine. From the collection of engine data, a full factorial analysis was created in order to identify the factors that most influence the outcomes such as the location of ignition, combustion phasing, combustion stability, and emissions. Furthermore, the interaction effect of combinations of two factors or more was discussed with the implication of fuel reactivity under current operating conditions. The analysis was done at both low (1000 RPM) and high speed (2000 RPM). It was found that the boost pressure and air/fuel ratio have strong impact on ignition and combustion phasing. Finally, injection-timing sweeps were conducted whereby the ignition (CA10) of the two fuels with significantly different reactivity were matched by controlling the boost pressure while maintaining a constant lambda (air/fuel equivalence ratio).


2000 ◽  
Vol 123 (1) ◽  
pp. 211-216 ◽  
Author(s):  
R. Sierens ◽  
S. Verhelst

The Laboratory of Transport Technology (Ghent University) converted a GM/Crusader V-8 engine for hydrogen use. The engine is intended for the propulsion of a midsize hydrogen city bus for public demonstration. For a complete control of the combustion process and to increase the resistance to backfire (explosion of the air–fuel mixture in the intake manifold), a sequential timed multipoint injection of hydrogen and an electronic management system is chosen. The results as a function of the engine parameters (ignition timing, injection timing and duration, injection pressure) are given. Special focus is given to topics related to the use of hydrogen as a fuel: ignition characteristics (importance of electrode distance), quality of the lubricating oil (crankcase gases with high contents of hydrogen), oxygen sensors (very lean operating conditions), and noise reduction (configuration and length of intake pipes). The advantages and disadvantages of a power regulation only by the air-to-fuel ratio (as for diesel engines) against a throttle regulation (normal gasoline or gas regulation) are examined. Finally, the goals of the development of the engine are reached: power output of 90 kW, torque of 300 Nm, extremely low emission levels, and backfire-safe operation.


2015 ◽  
Vol 813-814 ◽  
pp. 857-861
Author(s):  
A.N. Basavaraju ◽  
Mallikappa ◽  
B. Yogesha

The present energy situation has stimulated active research interest in non-petroleum and non-polluting fuels, particularly for transportation, power generation, and agricultural sectors. This paper describes feasibility of utilization of Spark ignition (SI) engine in single fuel mode and to develop the optimum operating conditions in terms of fuel injection timing and fuel injection pressure. Many modifications were made for the developed direct fuel injection system to improve the performance of the 350 cc four stroke single cylinder petrol engine. The engine is tested to conduct performance, combustion emission characteristics with the aid of carburetor. As single cylinder small engines have low compression ratio (CR), and they run with slightly rich mixture, their power are low and emission values are high. In this study, methanol was used to increase performance and decrease emissions of a single-cylinder engine. Initially, the engine whose CR was 7.5/1 was tested with gasoline and methanol at full load and various speeds. This method is used for increasing the fuel efficiency of a vehicle by adding different percentage of methanol to the petrol and to decrease the pollutants produced during combustion process.


2020 ◽  
Vol 197 ◽  
pp. 06010
Author(s):  
Antonio Caricato ◽  
Antonio Paolo Carlucci ◽  
Antonio Ficarella ◽  
Luciano Strafella

In this paper, the effect of late injection on combustion and emission levels has been investigated on a single cylinder compression ignition engine operated in dual-fuel mode injecting methane along the intake duct and igniting it through a pilot fuel injected directly into the combustion chamber. During the tests, the amount of pilot fuel injected per cycle has been kept constant, while the amount of methane has been varied on three levels. Therefore, three levels of engine load have been tested, while speed has been kept constant equal to 1500rpm. Pilot injection pressure has been varied on three set points, namely 500, 1000 and 1500 bar. For each engine load and injection pressure, pilot injection timing has been swept on a very broad range of values, spanning from very advanced to very late values. The analysis of heat release rate indicates that MK-like conditions are established in dual-fuel mode with late pilot injection. In these conditions, pollutant species, and NOx levels in particular, are significantly reduced without penalization – and in several conditions with improvement – on fuel conversion efficiency.


Trudy NAMI ◽  
2022 ◽  
pp. 31-40
Author(s):  
A. V. Gontyurev ◽  
N. S. Zuev

Introduction (problem statement and relevance). Now it is difficult to imagine the automotive industry without constant improvement of the power plant. This is due to the constant tightening of environmental standards, so in environmental standards Euro 6 there is a limit of the countable concentration of particulate matters. To meet the Euro 6 environmental standard, vehicle manufacturers use catalytic converters, and gasoline particle filters (GPF). These methods of reducing the emissions of the exhaust gas are quite common, but they also have a limitation on the service life. The use of only catalytic converters and GPF may not be sufficient to meet the Euro 7 standards in the future. So, there is a need to reduce emissions with exhaust gases by improving the combustion process.The purpose of work is to investigate the combustion process of a turbocharged gasoline direct injection engine to reduce particulate matter by increasing the injection pressure and optimizing the injection timing. Methodology and research methods. The studies are of an experimental nature, the reliability of the data is confirmed by the use of modern measuring equipment and post processing of the measured data. Scientific novelty and results. The fuel injection parameters, which have a significant influence on the particulate matter formation and oxidation are defined.Practical significance. The recommendations to reduce particulate matter formation and to meet the requirements of the future Euro standards are given.


Author(s):  
Vicente Bermúdez ◽  
Santiago Ruiz ◽  
Ricardo Novella ◽  
Lian Soto

In order to improve performance of internal combustion engines and meet the requirements of the new pollutant emission regulations, advanced combustion strategies have been investigated. The newly designed partially premixed combustion concept has demonstrated its potential for reducing NOx and particulate matter emissions combined with high indicated efficiencies while still retaining proper control over combustion process by using different injection strategies. In this study, parametric variations of injection pressure, second injection and third injection timings were experimentally performed to analyze the effect of the injection strategy over the air/fuel mixture process and its consequent impact on gaseous compound emissions and particulate matter emissions including its size distribution. Tests were carried out on a newly designed two-stroke high-speed direct injection compression-ignition engine operating with the partially premixed combustion concept using 95 research octane number gasoline fuel. A scanning particle sizer was used to measure the particles size distribution and the HORIBA 7100DEGR gas analyzer system to determine gaseous emissions. Three different steady-state operation modes in terms of indicated mean effective pressure and engine speed were investigated: 3.5 bar indicated mean effective pressure and 2000 r/min, 5.5 bar indicated mean effective pressure and 2000 r/min, and 5.5 bar indicated mean effective pressure and 2500 r/min. The experimental results confirm how the use of an adequate injection strategy is indispensable to obtain low exhaust emissions values and a balance between the different pollutants. With the increase in the injection pressure and delay in the second injection, it was possible to obtain a trade-off between NOx and particulate matter emission reduction, while there was an increase in hydrocarbon and carbon monoxide emissions under these conditions. In addition, the experiments showed an increase in particle number emissions and a progressive shift in the particles size distribution toward larger sizes, increasing the accumulation-mode particles and reducing the nucleation-mode particles with the decrease in the injection pressure and delay in the third injection.


2019 ◽  
Vol 141 (8) ◽  
Author(s):  
Pushpendra Kumar Sharma ◽  
Dilip Sharma ◽  
Shyam Lal Soni ◽  
Amit Jhalani

Excessive use of diesel engines and continuous increase in environmental pollution has drawn the attention of researchers in the area of the compression ignition engine. In this research article, an innovative investigation of the nonroad modified diesel engine is reported with the effective use of the hybrid Entropy-VIKOR approach. Hence, it becomes necessary to prioritize and optimize the performance defining criteria, which provides higher BTE along with lower emission simultaneously. The engine load, injection timing (Inj Tim), injection pressure (Inj Pre), and compression ratio (Com R) were selected as engine operating parameters for experimentation at the constant speed of 1500 rpm engine. The effect on engine performance parameters (BTE and BSEC) and emission (carbon monoxide (CO), total oxide of carbon (TOC), oxides of nitrogen (NOx), hydrocarbon (HC), and smoke) was studied experimentally. The optimum results were observed at load 10.32 kg, Inj Tim 20 deg btdc, Inj Pre 210 bar, and Com R 21:1 at which highest BTE of 22.24% and lowest BSEC of 16,188.5 kJ/kWh were obtained. Hybrid entropy-VIKOR approach was applied to establish the optimum ranking of the nonroad modified diesel engine. The experimental results and numerical simulation show that optimizing the engine operating parameters using the entropy-VIKOR multicriteria decision-making (MCDM) technique is applicable.


Author(s):  
Long Liu ◽  
Naoto Horibe ◽  
Tatsuya Komizo ◽  
Issei Tamura ◽  
Takuji Ishiyama

With the universal utilization of the common-rail injection system in automotive diesel engines, the multistage injection strategies have become typical approaches to satisfy the increasingly stringent emission regulations, and especially the post injection has received considerable attention as an effective way for reducing the smoke emissions. Normally the post injection is applied in combination with the pilot injection to restrain the NOx emissions, smoke emissions, and combustion noise simultaneously, and the pilot injection condition affects the combustion process of the main injection and might affect the smoke reduction effect of the post injection. Thus this study aims at obtaining the post injection strategy to reduce smoke emissions in a diesel engine, where post injection is employed in combination with pilot injection. The experiments were performed using a single-cylinder diesel engine under various conditions of pilot and post injection with a constant load at an IMEP of 1.01 MPa, fixed speed of 1500 rpm, and NOx emissions concentration of 150 ± 5 ppm that was maintained by adjusting the EGR ratio. The injection pressure was set at 90 MPa at first, and then it was varied to 125 MPa to evaluate the effects of post injection on the smoke reduction in the case of higher injection pressure. The experimental results show that small post injection quantity with a short interval from the end of main injection causes less smoke emissions. And larger pilot injection quantity and later pilot injection timing lead to higher smoke emissions. And then, to explore and interpret the smoke emissions tendencies with varying pilot and post injection conditions, the experimental results of three-stage injection conditions were compared to those of two reference cases, which only included the pilot and main injection, and the interaction between main spray flames and post sprays was applied for analysis. Based on the comparative analysis, the larger smoke reduction effect of post injection was observed with the larger pilot injection quantity, while it is not greatly influenced by pilot injection timing. In addition, the smoke emissions can be reduced considerably by increasing the injection pressure, however the smoke reduction effect of post injection was attenuated. And all of these tendencies were able to be interpreted by considering the intensity variation of the interaction between main spray flames and post sprays.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Adam Klingbeil ◽  
Seunghyuck Hong ◽  
Roy J. Primus

Abstract Experiments were conducted on a large bore, medium speed, single cylinder, diesel engine to investigate operation with substitution ratio of natural gas (NG) varying from 0% to 93% by energy. In a previous study by the same group, these data were used to validate an analytical methodology for predicting performance and emissions under a broad spectrum of energy substitution ratios. For this paper, these experimental data are further analyzed to better understand the performance and combustion behavior under NG substitution ratios of 0%, 60%, and 93%. These results show that by transitioning from diesel-only to 60% dual-fuel (DF) (60% NG substitution ratio), an improvement in the NOx-efficiency trade-off was observed that represented a ∼3% improvement in indicated efficiency at constant NOx. Further, the transition from 60% DF to 93% DF (93% NG substitution ratio) resulted in additional efficiency improvement with a simultaneous reduction in NOx emissions. The data suggest that this improvement can be attributed to the premixed nature of the high substitution ratio case. Furthermore, the results show that high cycle-to-cycle variation was observed for some 93% DF combustion tests. Further analysis, along with diesel injection rate measurements, shows that the observed extreme sensitivity of the combustion event can be attributed to critical parameters such as diesel fuel quantity and injection timing. These results suggest a better understanding of the relative importance of combustion system components and operating conditions in controlling cycle-to-cycle variation of combustion process.


Sign in / Sign up

Export Citation Format

Share Document