scholarly journals A Comprehensive Study of DI Diesel Engine Performance With Vegetable Oil: An Alternative Boi-fuel Source of Energy

Author(s):  
A. K. Azad ◽  
S. M. Ameer Uddin ◽  
M. M. Alam
2019 ◽  
Vol 8 (4) ◽  
pp. 4048-4052

Biodiesel, a derivative of vegetable oils and animal fats, is used nowadays as an alternative renewable and sustainable fossil fuel. In this work, the investigation of manufacture, characterization, and results of biodiesel blends are carried out using two important feedstock’s, sunflower oil and ricebran oil on engines. For the collective advantageous of sunflower oil and ricebran oil, the two biodiesels are combined together and the mixture is analysed to assess the engine performance and emission characteristics. NaOH catalyzed transesterification process is used for producing the Biodiesels A 4.4 kW, four-stroke, single-cylinder and direct fuel injection diesel engine is used for measuring physic-chemical with full load and varying speed conditions and using the specifications of ASTM D6751 standard, the properties are compared. It is observed that the Biodiesel mixtures produce a low brake torque and high brake-specific fuel consumption (BSFC) in addition to the reduction of CO and HC emissions. NOx, however, is reduced considerably with the improvement of brake thermal efficiency. The Performance analysis indicates that the mixture of sunflower oil and ricebran oil improves performance and emission characterizes over sunflower oil and ricebran oil biodiesel when they are unmixed..


Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4421 ◽  
Author(s):  
Karami ◽  
Rasul ◽  
Khan ◽  
Anwar

Biodiesel is an alternative fuel for diesel engine. Considering the differences between diesel and biodiesel fuels, the engine condition should be modified based on the fuel or fuel blends to achieve optimum performance. This study presented a performance analysis of a direct-injected (DI) diesel engine with a dynamometer fueled with diesel-tomato seed biodiesel (TSOB) blends employing ANOVA and universal nonlinear model based on ANN. The experiments were carried out under conditions of some independent variables including different engine loads (0, 50, 100%) and speed (1800, 2150, and 2500 rpm) for four diesel-biodiesel combinations (B0, B5, B10, and B20). In this research, the effect of these factors on dependent variables including power, torque, SFC, FC, and Exhaust Gas Temperature (EGT) are investigated. Duncan′s multi-domain test at a significance level of R < 0.01 shows that the highest and lowest of the torque and power are produced from B5 and B20, respectively. These results show that the lowest EGT of 613 K is related to B20 and the highest EGT is related to B5 and B10. The regression models showed that the torque decreases with increasing the engine speed and biodiesel percentage. These results also show that the highest and the lowest SFC is related to B0 and B20, respectively. The ANN model shows high capability of predicting the engine performance parameters and emissions, without running costly and time-consuming experiments with the histogram error of 0.004 and R = 0.96. It also proved that ANN is a non-linear model of choice to deal with these data, instead of multivariate linear regression employed for preliminary analysis.


Author(s):  
K. Ashok ◽  
N. Alagumurthi ◽  
C. G. Saravanan

An organic compound, Dioxane, is blended to reduce the viscosity of raw vegetable oil (Mahua). A dilute blend was prepared by mixing with raw vegetable oil (Mahua) and 10% dioxane in volume basis. Tests were conducted on a single cylinder, water cooled, DI diesel engine coupled with the eddy current dynamometer. Emissions like HC, NOX, etc., were measured by using gas analyzer and smoke density was measured by using smoke meter. The cylinder pressure, heat release rate were measured by combustion analyzer. From the experimental investigation, it was observed that operating at a blend ratio of 10% diesel-80% mahua oil-10% Dioxane significantly reduced the HC and NOx emissions when compared to diesel fuel. It was also observed, the variation of break thermal efficiency is almost same to that of diesel fuel. Hence, it can be concluded that raw vegetable oil (mahua) with Dioxane blend could partially replace the diesel, as a fuel.


Sign in / Sign up

Export Citation Format

Share Document