Blast loaded steel-concrete composite slab

2021 ◽  
Vol 15 (1) ◽  
pp. 7874-7884
Author(s):  
Aizat Alias ◽  
A.F.M. Amin

This paper presented a numerical investigation of a steel-concrete composite slab subjected to blast loads. The finite element model of the composite slab was developed and validated against experimental results. The validated finite element model of the composite slab then subjected to blast loads using CONWEP function in ABAQUS. A validation investigation was performed on CONWEP function by comparing the blast-pressure profiles from CONWEP against experimental data. Both validation studies showed that the developed finite element model of the composite slab and CONWEP agree reasonably well with test results. The fully restrained composite slab was subjected to four different blast loads with different explosive weights and standoff distances. The transient deformation of the composite slab after subjected to blast loads was investigated where as predicted the deformation of the composite slab was influenced by the blast pressure, which is affected by the weight of explosive and standoff distance. This study also investigated the mode of failure where it was determined flexural failure at the midspan is the main mode of failure accompanied with concrete tensile failure at the supports. The thickness of the profiled deck and the coeffecient of friction influenced the dynamic response of the composite slabs. Increasing the thickness reduces the maximum displacement of the composite slabs. Increasing the coefficient of friction reduces the maximum dislacement but once the coefficient of friction reach its optimum value, no positive benefit is gained.

2009 ◽  
Vol 416 ◽  
pp. 519-523
Author(s):  
Guo Zhi Zhang ◽  
Xian Hua Zhang ◽  
Li Li Liu ◽  
Zeng Ju Wei

Study on the effect of the surface manufacturing quality (roughness) to the friction between the surfaces. Based on the plastic theory of mechanism-based strain gradient (MSG) of the micro-plastic-mechanics and the contact theory, the theoretical model of the coefficient of friction between the rough surfaces and the non-linear finite element model between the grinding samples were established. Moreover, the surface stress distribution and the coefficient of friction were obtained through the sub-structure finite element method. The established model of static friction theoretical model and the accuracy of the finite element model were verified through comparing with the result of the static friction experiments between the grinding samples with different surface manufacturing quality. The study in the paper is important to the study on the surface friction mechanism.


2012 ◽  
Vol 165 ◽  
pp. 339-345 ◽  
Author(s):  
M. Joshani ◽  
S.S.R. Koloor ◽  
Redzuan Abdullah

Composite slab construction using permanent cold-formed steel decking has become one of the most economical and industrialized forms of flooring systems in modern building structures. Structural performance of the composite slab is affected directly by the horizontal shear bond phenomenon at steel-concrete interface layer. This study utilizes 3D nonlinear finite element quasi-static analysis technique to analyze the shear bond damage and fracture mechanics of the composite slabs. Fracture by opening and sliding modes of the plain concrete over the corrugated steel decking had been modeled with concrete damaged plasticity model available in ABAQUS/Explicit module. The horizontal shear bond was simulated with cohesive element. Cohesive fracture properties such as fracture energy and initiation stress were derived from horizontal shear bond stress versus end slip curves. These curves were extracted from bending tests of narrow width composite slab specimens. Results of the numerical analyses match the experimental results accurately. This study demonstrated that the proposed finite element model and analysis procedure can predict the behavior of composite slabs accurately. The procedure can be used as a cheaper alternative to experimental work for investigating the ultimate strength and actual fracture and damage behavior of steel-concrete composite slab systems.


2013 ◽  
Vol 790 ◽  
pp. 391-395
Author(s):  
Tian Li ◽  
Qiao Ying Jiang

The finite element model of a separately built one-storey underground frame was set up with software ANSYS/LS-DYNA and numerical simulation was done to study on surface overpressure and deformation of the underground frame beam under internal blast loads. It is found that the overpressure peak values on the beam end and middle surface are both much higher when the explosive is below the middle of beam and the peak on the middle surface goes up with the increment of explosive height while that on the beam end surface is not sensitive to the height. The numerical result also indicates that the soil around the frame nearly has no effect on surface overpressure of the frame beam. However, whether there is soil or not the beam deformation has much difference and the increment of the deformation is closely all the same for different soil thicknesses but under the circumstance of thicker soil the beam obtains less deformation upward in a short time after explosion.


2005 ◽  
Vol 128 (1) ◽  
pp. 7-12 ◽  
Author(s):  
T. R. Shultz ◽  
J. D. Blaha ◽  
T. A. Gruen ◽  
T. L. Norman

Many cementless implant designs rely upon a diaphyseal press-fit in conjunction with a porous coated implant surface to achieve primary or short term fixation, thereby constraining interface micromotion to such a level that bone ingrowth and consequent secondary or long-term fixation, i.e., osseointegration, can occur. Bone viscoelasticity, however, has been found to affect stem primary stability by reducing push-out load. In this investigation, an axisymmetric finite element model of a cylindrical stem and diaphyseal cortical bone section was created in order to parametrically evaluate the effect of bone viscoelasticity on stem push-out while controlling coefficient of friction (μ=0.15, 0.40, and 1.00) and stem-bone diametral interference (δ=0.01, 0.05, 0.10, and 0.50mm). Based on results from a previous study, it was hypothesized that stem-bone interference (i.e., press-fit) would elicit a bone viscoelastic response which would reduce the initial fixation of the stem as measured by push-out load. Results indicate that for all examined combinations of μ and δ, bone viscoelastic behavior reduced the push-out load by a range of 2.6–82.6% due to stress relaxation of the bone. It was found that the push-out load increased with μ for each value of δ, but minimal increases in the push-out load (2.9–4.9%) were observed as δ was increased beyond 0.10mm. Within the range of variables reported for this study, it was concluded that bone viscoelastic behavior, namely stress relaxation, has an asymptotic affect on stem contact pressure, which reduces stem push-out load. It was also found that higher levels of coefficient of friction are beneficial to primary fixation, and that an interference “threshold” exists beyond which no additional gains in push-out load are achieved.


Author(s):  
Ravindra Singh Bisht ◽  
Pushparaj Mani Pathak ◽  
Saroj Kumar Panigrahi

This paper presents an autonomous magnetic wheel-driven climbing robot for automatic inspection of above ground steel storage structures, particularly for large even vertical surfaces of above ground tall steel structures. The design, simulation and experimental investigations on a multi-layer permanent magnetic wheel mechanism are discussed. A Finite element model for magneto-static (FEMM) analysis is proposed for an optimal wheel mechanism design. Laboratory experiments have been performed to measure adhesion force generated by the developed magnetic wheel mechanism and compared with simulation results obtained by proposed finite element model. The effect of rubber grip thickness on magnetic wheel for measuring adhesion force is also studied. The coefficient of friction, which plays a vital role for robot locomotion, has been measured experimentally. It should be enough to provide sufficient traction by providing an extra rubber grip added around to the wheel rim. Analysis of forces due to magnetic wheel adhesion mechanism has been made for avoiding climbing robot slipping and toppling while crawling on vertical/incline wall. The wireless communication and control system for prototype climbing robot has been developed using ATMega microcontroller based Arduino boards, motor driver IC, XBee transceiver. The developed autonomous four-wheel differential drive magnetic climbing robot can be controlled remotely from a ground station up to 90 m outdoor line-of-sight working range. The prototype-climbing robot has demonstrated various maneuverability trials on a vertical ferrous surface, and described in this paper.


Author(s):  
Yi Zhang ◽  
Wei Wang ◽  
Kun Liu ◽  
Baohong Tong ◽  
Zhaowen Hu ◽  
...  

High-strength boron steels are widely used in manufacturing the auto bodies and parts of light-weight vehicles, but the high rates of surface scratches and die wear have consistently occurred during hot stamping for these steels. For an in-depth understanding of the tribological characteristics at this interface, the frictional contact behavior and thermomechanical mechanisms of boron steel 22MnB5 against die steel H13 at 800 °C were studied through experiments and finite-element simulations. The coefficient of friction and worn surface topography were investigated by pin-on-disk sliding tests. A three-dimensional thermomechanical finite-element model of a friction pair was established to explore the interfacial dynamic variations. Experimental and simulation results show that severe elastic–plastic deformation occurred on the worn surface of the boron steel, whereas an increase in the load decreased the coefficient of friction within a certain range because the growth rate of shear force was slower than that of the normal force. When the finite-element model was changed from the gradual loading stage to the initial sliding stage, the tangential friction force further increased the plastic deformation on the surface of boron steel. The scratches and furrows were mainly caused by the compression and shear from asperities of the rough surface, as confirmed by the high-frictional-stress regions concentrated on the peaks and flanks of asperities. During the high-temperature and high-pressure experiments, the plasticized and softened surface materials of the boron steel adhered to the die surface readily, resulting in peeling and delamination.


2022 ◽  
Vol 8 (1) ◽  
pp. 45-59
Author(s):  
Almoutaz Bellah Alsamawi ◽  
Nadir Boumechra ◽  
Karim Hamdaoui

This paper investigates the cyclic behaviour of steel-concrete encased composite columns. By investigating the cover concrete and the steel-concrete coefficient of friction on the behaviour (strength, ductility, stiffness, and energy dissipation) of composite columns subjected to combined axial load and cyclically increasing lateral load to improve the strength and performance of the composite column. Eight of the columns were designed to study the cover concrete effect, and eleven other columns were designed to study the coefficient of friction effect in the dynamic behaviour to the cyclic load. Additionally, in this study, the finite element models created in ANSYS software were verified and calibrated against previously published experimental results (load-displacement curve, load capacity and failure mode). The numerical results obtained from the finite element model indicate that the ductility and the energy dissipated increased by +11.71 and +18.93% receptively by the increase of the cover concrete until reaching the limit of the cover concrete. Beyond this limit, the ductility and the energy decrease by 27.33 and 24.97% receptively. The results also indicate that the ductility and the energy dissipated increased by 12.62 and 7.82% receptively by the increased coefficient of friction until reach 0.6, after that the energy decreases by 4.47%. Doi: 10.28991/CEJ-2022-08-01-04 Full Text: PDF


1986 ◽  
Vol 19 (4) ◽  
pp. 807-824
Author(s):  
Wayne F. Larrabee ◽  
J.A. Galt

2021 ◽  
Vol 26 (3) ◽  
pp. 04021002
Author(s):  
Yifan Xie ◽  
Zhenze Xie ◽  
Jichun Wu ◽  
Yong Chang ◽  
Chunhong Xie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document