Induced Consumption of High-Concentration Ethanol Solution in Rats

1969 ◽  
Vol 30 (2) ◽  
pp. 330-335 ◽  
Author(s):  
R. J. Senter ◽  
Charles L. Richman
2014 ◽  
Vol 979 ◽  
pp. 79-82
Author(s):  
S. Srichai ◽  
S. Heng

The effect on performance of single direct ethanol cell due to ethanol solution concentrations (5%, 10% and 15% by volume, ambient temperature (and), continuously changing of ambient temperature ( and), load resistance ( and) and air circulation through the cell were investigated experimentally in this research. The results showed that fuel cells have a high performance at high concentration of ethanol solution, high ambient temperature or operated in the wide range of continuously changing of ambient temperature. The performance was measured by the amount of the initial voltage, current and power obtained from fuel cell. But increasing air circulation through the fuel cell does not affect the performance of cell. The voltage and power drop obtained from the fuel cell increase with varying resistance load. But the current decreases with increases resistance load.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Xuezhong He

Cellulose acetate (CA) hollow fibers were spun from a CA+ Polyvinylpyrrolidone (PVP)/N-methyl-2-pyrrolidone (NMP)/H2O dope solution and regenerated by deacetylation. The complete deacetylation time of 0.5 h was found at a high concentration (0.2 M) NaOH ethanol (96%) solution. The reaction rate of deacetylation with 0.5 M NaOH was faster in a 50% ethanol compared to a 96 vol.% ethanol. The hydrogen bond between CA and tertiary amide group of PVP was confirmed. The deacetylation parameters of NaOH concentration, reaction time, swelling time, and solution were investigated by orthogonal experimental design (OED) method. The degree of cross-linking, the residual acetyl content, and the PVP content in the deacetylated membranes were determined by FTIR analysis. The conjoint analysis in the Statistical Product and Service Solutions (SPSS) software was used to analyze the OED results, and the importance of the deacetylation parameters was sorted as Solution > Swelling time > Reaction time > Concentration. The optimal deacetylation condition of 96 vol.% ethanol solution, swelling time 24 h, the concentration of NaOH (0.075 M), and the reaction time (2 h) were identified. The regenerated cellulose hollow fibers under the optimal deacetylation condition can be further used as precursors for preparation of hollow fiber carbon membranes.


Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1569 ◽  
Author(s):  
Dong ◽  
Sun ◽  
Chen ◽  
Yang ◽  
Li ◽  
...  

A series of pyrenyl-containing PDMAA copolymers were prepared by free radical copolymerization of dimethylacrylamide (DMAA) with pyrenebutanoyloxy ethyl methacrylate (PyBEMA). The structure of as-prepared copolymers was characterized by UV, FT-IR and 1H NMR spectroscopy. The effect of cyclodextrins (α-CD, β-CD and γ-CD) on the thermosensitivity and fluorescence of the copolymers in aqueous solutions were investigated. It was found that the as-prepared copolymers exhibit lower critical solution temperature (LCST)-type thermosensitivity. Cloud point (Tcp) decreases with the increasing molar content of PyBEMA unit in the copolymers. Tcp of the copolymers increases after the CD is added from half molar to equivalent amount relative to pyrenyl moiety, and that further adding twice equivalent CD results in a slight decrease in Tcp. The copolymers exhibit a pyrene emission located at 377 nm and a broad excimer emission centered at 470 nm. The copolymers in water present a stronger excimer emission (Intensity IE) relative to monomer emission (Intensity IM) than that in ethanol. The IE/IM values decrease after the addition of equivalent α-CD, β-CD and γ-CD into the copolymers in aqueous solution, respectively. The IE/IM values abruptly increase as the copolymers’ concentration is over 0.2 mg/L whether in ethanol solution or aqueous solution with or without CD, from which can probably be inferred that intra-polymeric pyrene aggregates dominate for solution concentration below 0.2 mg/L and inter-polymeric pyrene aggregates dominate over 0.2 mg/L. Furthermore, the formation of the CD pseudopolyrotaxanes makes it possible to form pyrene aggregates. For high concentration of 5 g/L, the copolymers and their inclusion complexes completely exhibit an excimer emission. The IE values abruptly increased as the temperature went up to Tcp, which indicates that the IE values can be used to research phase separation of polymers.


2017 ◽  
Vol 2017 ◽  
pp. 1-6
Author(s):  
Deok Min Seo ◽  
Myung Gwan Hahm ◽  
Young Lae Kim

Small and large single-walled carbon nanotubes (SWCNTs) bundles from different-sized cobalt catalyst clusters have been synthesized and prepared through chemical vapor deposition (CVD) method by using Co-acetate ethanol solution with silica nanoparticles. By controlling concentration of Co-acetate ethanol solution (0.2 wt% and 0.4 wt%), various sizes and types of bundle of SWCNTs are grown on the silica nanoparticle substrates. Synthesized SWCNT’s diameter ranged from 0.92 nm to 1.63 nm, and chirality of SWCNTs and their electronic property from high concentration solution show diverse characteristics. In high concentration solution, the large number of cobalt clusters is induced to merge on the surface of silica nanoparticles and then lots of nucleation points are provided by cobalt clusters for growth of SWNTs. These results give us a promising path to selectively synthesize various types of SWCNTs with different shapes of merged cobalt catalyst. Engineering bundle sizes of SWCNTs can be promising key for diverse applications of carbon nanotubes.


Author(s):  
Daniel C. Pease

A previous study demonstrated that tissue could be successfully infiltrated with 50% glutaraldehyde, and then subsequently polymerized with urea to create an embedment which retained cytomembrane lipids in sectioned material. As a result, the 180-190 Å periodicity characteristic of fresh, mammalian myelin was preserved in sections, as was a brilliant birefringence, and the capacity to bind OsO4 vapor in the hydrophobic bilayers. An associated (unpublished) study, carried out in co-operation with Drs. C.K. Akers and D.F. Parsons, demonstrated that the high concentration of glutaraldehyde (and urea) did not significantly alter the X-ray diffraction pattern of aldehyde-fixed, myelin. Thus, by itself, 50% glutaraldehyde has little effect upon cytomembrane systems and can be used with confidence for the first stages of dehydration.


Author(s):  
Glenn M. Cohen ◽  
Radharaman Ray

Retinal,cell aggregates develop in culture in a pattern similar to the in ovo retina, forming neurites first and then synapses. In the present study, we continuously exposed chick retinal cell aggregates to a high concentration (1 mM) of carbamylcholine (carbachol), an acetylcholine (ACh) analog that resists hydrolysis by acetylcholinesterase (AChE). This situation is similar to organophosphorus anticholinesterase poisoning in which the ACh level is elevated at synaptic junctions due to inhibition of AChE, Our objective was to determine whether continuous carbachol exposure either damaged cholino- ceptive neurites, cell bodies, and synaptic elements of the aggregates or influenced (hastened or retarded) their development.The retinal tissue was isolated aseptically from 11 day embryonic White Leghorn chicks and then enzymatically (trypsin) and mechanically (trituration) dissociated into single cells. After washing the cells by repeated suspension and low (about 200 x G) centrifugation twice, aggregate cell cultures (about l0 cells/culture) were initiated in 1.5 ml medium (BME, GIBCO) in 35 mm sterile culture dishes and maintained as experimental (containing 10-3 M carbachol) and control specimens.


Author(s):  
James Cronshaw

Long distance transport in plants takes place in phloem tissue which has characteristic cells, the sieve elements. At maturity these cells have sieve areas in their end walls with specialized perforations. They are associated with companion cells, parenchyma cells, and in some species, with transfer cells. The protoplast of the functioning sieve element contains a high concentration of sugar, and consequently a high hydrostatic pressure, which makes it extremely difficult to fix mature sieve elements for electron microscopical observation without the formation of surge artifacts. Despite many structural studies which have attempted to prevent surge artifacts, several features of mature sieve elements, such as the distribution of P-protein and the nature of the contents of the sieve area pores, remain controversial.


Author(s):  
R.A. Herring

Rapid thermal annealing (RTA) of ion-implanted Si is important for device fabrication. The defect structures of 2.5, 4.0, and 6.0 MeV As-implanted silicon irradiated to fluences of 2E14, 4E14, and 6E14, respectively, have been analyzed by electron diffraction both before and after RTA at 1100°C for 10 seconds. At such high fluences and energies the implanted As ions change the Si from crystalline to amorphous. Three distinct amorphous regions emerge due to the three implantation energies used (Fig. 1). The amorphous regions are separated from each other by crystalline Si (marked L1, L2, and L3 in Fig. 1) which contains a high concentration of small defect clusters. The small defect clusters were similar to what had been determined earlier as being amorphous zones since their contrast was principally of the structure-factor type that arises due to the difference in extinction distance between the matrix and damage regions.


Author(s):  
J.M. Guilemany ◽  
F. Peregrin

The shape memory effect (SME) shown by Cu-Al-Mn alloys stems from the thermoelastic martensitic transformation occuring between a β (L2,) metastable phase and a martensitic phase. The TEM study of both phases in single and polycrystalline Cu-Al-Mn alloys give us greater knowledge of the structure, order and defects.The alloys were obtained by vacuum melting of Cu, Al and Mn and single crystals were obtained from polycrystalline alloys using a modified Bridgman method. Four different alloys were used with (e/a) ranging from 1.41 to 1.46 . Two different heat treatments were used and the alloys also underwent thermal cycling throughout their characteristic temperature range -Ms, Mf, As, Af-. The specimens were cut using a low speed diamond saw and discs were mechanically thinned to 100 μm and then ion milled to perforation at 4 kV. Some thin foils were also prepared by twin-jet electropolishing, using a (1:10:50:50) urea: isopropyl alcohol: orthophosphoric acid: ethanol solution at 20°C. The foils were examinated on a TEM operated at 200 kV.


2020 ◽  
Vol 477 (15) ◽  
pp. 2921-2934
Author(s):  
Rodrigo D. Requião ◽  
Géssica C. Barros ◽  
Tatiana Domitrovic ◽  
Fernando L. Palhano

Protein segments with a high concentration of positively charged amino acid residues are often used in reporter constructs designed to activate ribosomal mRNA/protein decay pathways, such as those involving nonstop mRNA decay (NSD), no-go mRNA decay (NGD) and the ribosome quality control (RQC) complex. It has been proposed that the electrostatic interaction of the positively charged nascent peptide with the negatively charged ribosomal exit tunnel leads to translation arrest. When stalled long enough, the translation process is terminated with the degradation of the transcript and an incomplete protein. Although early experiments made a strong argument for this mechanism, other features associated with positively charged reporters, such as codon bias and mRNA and protein structure, have emerged as potent inducers of ribosome stalling. We carefully reviewed the published data on the protein and mRNA expression of artificial constructs with diverse compositions as assessed in different organisms. We concluded that, although polybasic sequences generally lead to lower translation efficiency, it appears that an aggravating factor, such as a nonoptimal codon composition, is necessary to cause translation termination events.


Sign in / Sign up

Export Citation Format

Share Document