Library Functions of Gyeongju Oksanseowon from Point of View of Collection of Books and Its Operating Conditions

2016 ◽  
Vol 58 ◽  
pp. 423 ◽  
Author(s):  
Byoung-Hoon Lee
1990 ◽  
Vol 22 (1-2) ◽  
pp. 347-352 ◽  
Author(s):  
C. Paffoni ◽  
B. Védry ◽  
M. Gousailles

The Paris Metropolitan area, which contains over eight million inhabitants, has a daily output of about 3 M cu.meters of wastewater, the purification of which is achieved by SIAAP (Paris Metropolitan Area Sewage Service) in both Achères and Valenton plants. The carbon pollution is eliminated from over 2 M cu.m/day at Achères. In order to improve the quality of output water, its tertiary nitrification in fixed-bed reactors has been contemplated. The BIOFOR (Degremont) and BIOCARBONE (OTV) processes could be tested in semi-industrial pilot reactors at the CRITER research center of SIAAP. At a reference temperature of 13°C, the removed load is approximately 0.5 kg N NH4/m3.day. From a practical point of view, it may be asserted that in such operating conditions as should be at the Achères plant, one cubic meter of filter can handle the tertiary nitification of one cubic meter of purified water per hour at an effluent temperature of 13°C.


Author(s):  
O. Koshelnik ◽  
S. Hoisan

One of the ways to increase glass furnaces energy efficiency is to apply heat exchangers for flue gases thermal potential utilization. Flue gases losses is up to 25-40 % of the total amount of heat supplied in the furnace. These losses are influences by such factors as fuel type, furnace and burners design and manufactured product type. Regenerative heat exchangers with various types of heat storage packing is more efficient for high-power furnaces. Such types of regenerator checkerwork as Cowper checkerwork, two types of Siemens checkerwork, Lichte checkerwork and combined checkerwork have already been sufficiently researched, successfully applied and widely used for glass furnaces of various designs. All of its are made of standard refractory bricks. Basket checkerwork and cruciform checkerwork that are made of fused-cast molded refractory materials have been widely used recently as well. Further improvement of regenerative heat exchangers thermal efficiency only by replacing the checkerwork does not seem possible unless their size being increased. But this enlarging is not always realizable during the modernization of existing furnaces. From this point of view heat storage elements with a phase transition, where metal salts and their mixtures are used as a fusible agent look promising for glass furnaces. These elements can accumulate additional amount of heat due to phase transition, which allows to increase significantly heat exchanger thermal rating without its size and operating conditions changing. However, it is necessary to carry out additional studies of this type of checkerwork dealing with analysis of complex unsteady heat exchange processes in regenerators and selection of appropriate materials that satisfy the operating conditions of regenerative heat exchangers so that the checkerwork can be widely used for glass furnaces.


T-Comm ◽  
2020 ◽  
Vol 14 (12) ◽  
pp. 45-50
Author(s):  
Mikhail E. Sukhoparov ◽  
◽  
Ilya S. Lebedev ◽  

The development of IoT concept makes it necessary to search and improve models and methods for analyzing the state of remote autonomous devices. Due to the fact that some devices are located outside the controlled area, it becomes necessary to develop universal models and methods for identifying the state of low-power devices from a computational point of view, using complex approaches to analyzing data coming from various information channels. The article discusses an approach to identifying IoT devices state, based on parallel functioning classifiers that process time series received from elements in various states and modes of operation. The aim of the work is to develop an approach for identifying the state of IoT devices based on time series recorded during the execution of various processes. The proposed solution is based on methods of parallel classification and statistical analysis, requires an initial labeled sample. The use of several classifiers that give an answer "independently" from each other makes it possible to average the error by "collective" voting. The developed approach is tested on a sequence of classifying algorithms, to the input of which the time series obtained experimentally under various operating conditions were fed. Results are presented for a naive Bayesian classifier, decision trees, discriminant analysis, and the k nearest neighbors method. The use of a sequence of classification algorithms operating in parallel allows scaling by adding new classifiers without losing processing speed. The method makes it possible to identify the state of the Internet of Things device with relatively small requirements for computing resources, ease of implementation, and scalability by adding new classifying algorithms.


Author(s):  
Yu. Yu. Borisova ◽  
I. V. Akimova

In article authors investigate questions of the operating legal regulation of coordination of economic activity of independent economic entities, including questions of its legisla- tive definition and signs. Article contains the detailed analysis of the most interesting examples of judicial practice and practice of antimonopoly authorities on the matter. Authors, analyzing the current legal regulation, also give an assessment to the planned changes in the legislation in this part and state the point of view about dependence of legal assessment of actions of the coordinator and the economic entities coordinated by it on operating conditions of commodity markets on which it is carried out. As a result of a research authors drew a conclusion on need of legislative changes in a part of admis- sibility of the forbidden coordination provided that the advantage for consumers of such coordination exceeds negative effects for the competition.A significant amount of works of the modern scientists and experts investigating a per- spective of institutes of the antitrust law is devoted to questions of legal qualification of coordination of economic activity of independent economic entities in legal scientific literature.The matter was also raised in publications and authors of the "Rossiyskoye Konkurent- noye Pravo I Ekonomika" magazine, at the same time, it should be noted that to consid- eration of questions of coordination of activity smaller attention is paid, than, for ex- ample, to questions of cartels.Thus, degree of scientific readiness of the matter in general is rather high, at the same time to authors the relevance of this subject and need of the analysis and assessment of the operating regulation taking into account economic features of the present stage of development of the markets seems to be of high interest.


Author(s):  
Enrico Corti

On-Board Diagnostics (OBD) regulations impose missing combustions detection within a wide portion of the engine operating range. Missing combustions can be caused either by ignition (misfire) or injection (misfuel) system failures. Missing combustions can damage the catalyst and cause abrupt pollutants increases (especially HC), but misfuels are not as detrimental as misfires, both from the emissions and the after treatment system life point of view. It would be important for the Electronic Control Unit (ECU) to be informed not only about the fault event, but also about its type, for the purpose of setting the right recovery strategy. The aim of this paper is to analyze missing combustion phenomena, in order to find out if a fault recognition strategy able to distinguish between misfire and misfuel can be setup. Different approaches can be found in the literature to diagnose missing combustions: many of them are based on the speed signal analysis, both in time and frequency domains, others use the knock accelerometer signal, or the exhaust manifold pressure information. A Universal Exhaust Gas Oxygen (UEGO) sensor can also be used. Usually diagnosis methodologies consist in observing signals perturbations subsequent to the malfunction event. Observable consequences of missing combustions are, for example, a sudden lack of indicated torque, causing vibrations and speed fluctuations, an increasing in exhaust gases Oxygen content, anomalous exhaust pressure ripples, etc. Many phenomena interact influencing in different ways the engine behavior, during and after the fault event: their effect can depend on the fault cause, thus helping the recognition. The first combustion taking place in the faulty cylinder after a misfire (post-misfiring cycle) usually leads to higher indicated pressure and torque levels if compared to standard values for the same operating conditions, while the same cannot be said for the post-misfueling combustion. On the other side, Air-Fuel Ratio (AFR) assumes different trends during the misfiring and post-misfiring cycles, with respect to misfueling and post-misfueling cycles. A 4 cylinders 1.2 liters spark ignition port injected engine, equipped with a programmable Electronic Control Unit (ECU) has been tested on the test bench, inducing both misfires and misfuels, over a wide engine operating range, while monitoring the engine faulty behavior. Misfire and misfuel-related phenomena have been analyzed showing their “signature” on indicated pressure and torque, engine speed and Air-Fuel Ratio measured signals, in order to define the most reliable recognition strategy.


Actuators ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 54 ◽  
Author(s):  
Suzana Lampreia ◽  
Valter Vairinhos ◽  
Victor Lobo ◽  
José Requeijo

This paper describes the analysis, from a statistical point of view, of a maritime gas turbine, under various operating conditions, so as to determine its state. The data used concerns several functioning parameters of the turbines, such as temperatures and vibrations, environmental data, such as surrounding temperature, and past failures or quasi-failures of the equipment. The determination of the Mean Time Between Failures (MTBF) gives a rough estimate of the state of the turbine, but in this paper we show that it can be greatly improved with graphical and statistical analysis of data measured during operation. We apply the Laplace Test and calculate the gas turbine reliability using that data, to define the gas turbine failure tendency. Using these techniques, we can have a better estimate of the turbine’s state, and design a preventive observation, inspection and intervention plan.


Author(s):  
Rajesh Kumar Porwal ◽  
Vinod Yadava ◽  
J. Ramkumar

Determination of material removal rate (MRR), tool wear rate (TWR) and hole taper (Ta) is a challenging task for manufacturing engineers from the productivity and accuracy point of view of the symmetrical and nonsymmetrical holes due to hole sinking electro discharge micro machining (HS-EDMM) process. Thus, mathematical models for quick prediction of these aspects are needed because experimental determinations of process performances are always tedious and time consuming. Not only prediction but determination of optimum parameter for optimization of process performance is also required. This paper attempts to apply a hybrid mathematical approach comprising of Back Propagation Neural Network (BPNN) for prediction and Grey Relational Analysis (GRA) coupled with Principal Component Analysis (PCA) for optimization with multiple responses of HS-EDMM of Invar-36. Experiments were conducted to generate dataset for training and testing of the network where input parameters consist of gap voltage, capacitance of capacitor and the resulting performance parameters MRR, TWR and Ta. The results indicate that the hybrid approach is capable to predict process output and optimize process performance with reasonable accuracy under varied operating conditions of HS-EDMM. The proposed approach would be extendable to other configurations of EDMM processes for different material.


2019 ◽  
Vol 298 ◽  
pp. 00032
Author(s):  
A. L. Akhtulov ◽  
O. M. Kirasirov ◽  
M. O. Kirasirov

The article deals with the calculation of metal bridge cranes operating under the influence of variable loads. Requirements to static and dynamic characteristics of mechanisms of load-lifting cranes are caused by specifics of work, features of a design and operating conditions of the cranes working at variable loadings. Thus, it is proposed to perform calculations of parts of crane mechanisms for endurance, operating under non-stationary variable load, based on the principle of linear summation of damage, allowing the calculation from the point of view of the load equivalent to the entire range of operating loads.


2013 ◽  
Vol 34 (1) ◽  
pp. 175-186 ◽  
Author(s):  
Ilknur Atasoy ◽  
Mehmet Yuceer ◽  
Ridvan Berber

Abstract Saccharamyces cerevisia known as baker’s yeast is a product used in various food industries. Worldwide economic competition makes it a necessity that industrial processes be operated in optimum conditions, thus maximisation of biomass in production of saccharamyces cerevisia in fedbatch reactors has gained importance. The facts that the dynamic fermentation model must be considered as a constraint in the optimisation problem, and dynamics involved are complicated, make optimisation of fed-batch processes more difficult. In this work, the amount of biomass in the production of baker’s yeast in fed-batch fermenters was intended to be maximised while minimising unwanted alcohol formation, by regulating substrate and air feed rates. This multiobjective problem has been tackled earlier only from the point of view of finding optimum substrate rate, but no account of air feed rate profiles has been provided. Control vector parameterisation approach was applied the original dynamic optimisation problem which was converted into a NLP problem. Then SQP was used for solving the dynamic optimisation problem. The results demonstrate that optimum substrate and air feeding profiles can be obtained by the proposed optimisation algorithm to achieve the two conflicting goals of maximising biomass and minimising alcohol formation.


1970 ◽  
Vol 185 (1) ◽  
pp. 373-381 ◽  
Author(s):  
D. J. Haines

The behaviour of individual ball to track contact areas is studied in close conformity oil lubricated conditions. Although primarily concerned with aero-engine operating conditions the results are expressed in dimension-less forms which permit use over a wide field of ball race geometries. An arbitrary boundary is established, based upon electrical conductance through the oil film, between running conditions which produce minimal wear damage and conditions which are probably unacceptable from this point of view. The major purpose of the paper is to focus attention on this criterion and to relate ball to track kinematic situations to it.


Sign in / Sign up

Export Citation Format

Share Document